日韩欧美另类久久久精品_亚洲大色堂人在线无码_国产三级aⅴ在线播放_在线无码aⅴ精品动漫_国产精品精品国产专区

我要投稿 投訴建議

高考數(shù)學(xué)模擬試題及答案

時(shí)間:2022-08-10 07:30:27 高考試題 我要投稿
  • 相關(guān)推薦

2016年高考數(shù)學(xué)模擬試題及答案

  一、非標(biāo)準(zhǔn)

2016年高考數(shù)學(xué)模擬試題及答案

  1.若不等式|2x-1|+|x+2|≥a2+a+2對(duì)任意實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍。

  2.(2014江西,文15改編)x,yR,若|x|+|y|+|x-1|+|y-1|≤2,求x+y的取值范圍。

  3.若對(duì)任意的aR,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,求實(shí)數(shù)x的取值范圍。

  4.已知函數(shù)f(x)=|x-2|,g(x)=-|x+3|+m.若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求m的取值范圍。

  5.已知x,y,zR+,且x+y+z=1,求的最小值。

  6.(2014江蘇,21)已知x>0,y>0,證明:(1+x+y2)(1+x2+y)≥9xy。

  7.已知a, b,cR,a+2b+3c=6,求a2+4b2+9c2的最小值。

  8.若存在實(shí)數(shù)x使|x-a|+|x-1|≤3成立,求實(shí)數(shù)a的取值范圍。

  9.已知f(x)=|x+a|+|x-2|。

  (1)當(dāng)a=-1時(shí),解關(guān)于x的不等式f(x)>5;

  (2)已知關(guān)于x的不等式f(x)+a<2014(a是常數(shù))的解集是非空集合,求實(shí)數(shù)a的取值范圍。

  10.(2014河南鄭州模擬)已知函數(shù)f(x)=|x-a|。

  (1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;

  (2)在(1)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍。

  參考答案

  1.解:令f(x)=|2x-1|+|x+2|=可求得f(x)的最小值為,故原不等式恒成立轉(zhuǎn)化為a2+a+2≤恒成立,即a2+≤0,

  即(a+1)≤0,解得a。

  2.解:|x|+|x-1|≥|x-(x-1)|=1,當(dāng)且僅當(dāng)0≤x≤1時(shí)取等號(hào),

  |y|+|y-1|≥|y-(y-1)|=1,當(dāng)且僅當(dāng)0≤y≤1時(shí)取等號(hào),

  |x|+|y|+|x-1|+|y-1|≥2。①

  又|x|+|y|+|x-1|+|y-1|≤2,②

  ∴只有當(dāng)0≤x≤1,0≤y≤1時(shí),兩式同時(shí)成立。

  0≤x+y≤2。

  3.解:由|1+a|-|1-a|≤2,

  得|x|+|x-1|≥2。

  當(dāng)x<0時(shí),-x+1-x≥2,x≤-。

  當(dāng)0≤x≤1時(shí),x+1-x≥2,無(wú)解。

  當(dāng)x>1時(shí),x+x-1≥2,x≥。

  綜上,x≤-或x≥。

  4.解:函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,即|x-2|>-|x+3|+m對(duì)任意實(shí)數(shù)x恒成立,

  即|x-2|+|x+3|>m恒成立。

  因?yàn)閷?duì)任意實(shí)數(shù)x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,所以m<5,即m的取值范圍是(-∞,5)。

  5.解法一:由于(x+y+z)≥36。

  所以≥36,最小值為36。

  當(dāng)且僅當(dāng)x2=y2=z2,

  即x=,y=,z=時(shí),等號(hào)成立。

  解法二:

  =(x+y+z)+(x+y+z)+(x+y+z)

  =14+≥14+4+6+12=36。最小值為36。

  當(dāng)且僅當(dāng)y=2x,z=3x,即x=,y=,z=時(shí),等號(hào)成立。

  6.證明:因?yàn)閤>0,y>0,

  所以1+x+y2≥3>0,

  1+x2+y≥3>0,

  故(1+x+y2)(1+x2+y)

  ≥3·3=9xy。

  7.解法一:(x+y+z)2=x2+y2+z2+2xy+2yz+2zx≤3(x2+y2+z2),

  ∴a2+4b2+9c2

  ≥(a+2b+3c)2=12。

  ∴a2+4b2+9c2的最小值為12。

  解法二:由柯西不等式,

  得(a2+4b2+9c2)·(12+12+12)

  ≥(a·1+2b·1+3c·1)2=36,

  故a2+4b2+9c2≥12,

  從而a2+4b2+9c2的最小值為12。

  8.解:利用絕對(duì)值不等式的性質(zhì)求解。

  |x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,

  要使|x-a|+|x-1|≤3有解,

  可使|a-1|≤3,-3≤a-1≤3,

  ∴-2≤a≤4。

  9.解:(1)構(gòu)造函數(shù)g(x)=|x-1|+|x-2|-5,則g(x)=

  令g(x)>0,則x<-1或x>4,

  原不等式的解集為(-∞,-1)(4,+∞)。

  (2)∵f(x)+a=|x+a|+|x-2|+a≥|a+2|+a,

  又關(guān)于x的不等式f(x)+a<2014的解集是非空集合,

  |a+2|+a<2014,解得a<1006。

  10.解:(1)由f(x)≤3,得|x-a|≤3,

  解得a-3≤x≤a+3。

  又已知不等式f(x)≤3的解集為{x|-1≤x≤5},

  所以解得a=2。

  (2)當(dāng)a=2時(shí),f(x)=|x-2|,

  設(shè)g(x)=f(x)+f(x+5),

  于是g(x)=|x-2|+|x+3|

  所以當(dāng)x<-3時(shí),g(x)>5;

  當(dāng)-3≤x≤2時(shí),g(x)=5;

  當(dāng)x>2時(shí),g(x)>5。

  綜上可得,g(x)的最小值為5。

  從而若f(x)+f(x+5)≥m,

  即g(x)≥m對(duì)一切實(shí)數(shù)x恒成立,則m的取值范圍為(-∞,5]。

【高考數(shù)學(xué)模擬試題及答案】相關(guān)文章:

2014北京高考語(yǔ)文試題及答案09-25

2013北京高考語(yǔ)文試題及答案09-25

2015高考英語(yǔ)模擬試題及答案09-26

北京高考語(yǔ)文試題答案09-28

2017高考湖北語(yǔ)文試題及答案09-26

2016安徽高考政治模擬試題及答案09-25

2015年陜西高考語(yǔ)文試題及答案09-26

2015年湖南高考語(yǔ)文試題及答案09-26

2015年廣東高考語(yǔ)文試題及答案09-26

成人高考民法模擬試題及答案11-13