【優(yōu)】中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而肯定成績(jī),得到經(jīng)驗(yàn),找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書(shū)面材料,它可以有效鍛煉我們的語(yǔ)言組織能力,因此十分有必須要寫(xiě)一份總結(jié)哦。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編精心整理的中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
一、重要概念
1、數(shù)的分類(lèi)及概念
數(shù)系表:
說(shuō)明:“分類(lèi)”的原則:1)相稱(chēng)(不重、不漏)
2)有標(biāo)準(zhǔn)
2、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱(chēng)。(表為:x≥0)
常見(jiàn)的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
3、倒數(shù):①定義及表示法
、谛再|(zhì):≠1/a(a≠±1);中,a≠0;a1時(shí),1/a1;D。積為1。
4、相反數(shù):①定義及表示法
、谛再|(zhì):≠0時(shí),a≠—a;與—a在數(shù)軸上的位置;C。和為0,商為—1。
5、數(shù)軸:①定義(“三要素”)
、谧饔茫篈。直觀地比較實(shí)數(shù)的大小;B。明確體現(xiàn)絕對(duì)值意義;C。建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6、奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n—1
偶數(shù):2n(n為自然數(shù))
7、絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)?幾何意義是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
、讴│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類(lèi)型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
第十一章:全等三角形復(fù)習(xí)
一全等三角形
1、什么是全等三角形?一個(gè)三角形經(jīng)過(guò)哪些變化可以得到它的全等形?能夠完全重合的兩個(gè)三角形叫做全等三角形。一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形。
2、全等三角形有哪些性質(zhì)?
。1):全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。
。2):全等三角形的周長(zhǎng)相等、面積相等。
。3):全等三角形的對(duì)應(yīng)邊上的對(duì)應(yīng)中線(xiàn)、角平分線(xiàn)、高線(xiàn)分別相等。
3、一般三角形全等的條件(包括直角三角形):(1)定義(重合)法;
(2)SSS:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等;
(3)SAS:兩邊和它們的夾角對(duì)應(yīng)相等兩個(gè)三角形全等;
(4)ASA:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等;
(5)AAS:兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。解題常用后面四種方法。直角三角形全等特有的條件:HL(斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等)。
4、證明兩個(gè)三角形全等的基本思路:
。1)已知兩邊:a、找第三邊(SSS);b、找?jiàn)A角(SAS);c、找是否有直角(HL)。
。2)已知一邊一角:①已知一邊和他的鄰角:a、找這邊的另一個(gè)鄰角(ASA);b、找這個(gè)角的另一個(gè)邊(SAS);c、找這邊的對(duì)角(AAS)。
②已知兩角:a、找兩角的夾邊(ASA);b、找?jiàn)A邊外的任意邊(AAS)。
二角平分線(xiàn)
1、角平分線(xiàn)的性質(zhì):角的平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等。
2、角平分線(xiàn)的判定:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的.平分線(xiàn)上。
用法1:∵ QD⊥OA,QE⊥OB用法2:∵ QD⊥OA,QE⊥OB,QD=QE。
∴點(diǎn)Q在∠AOB的平分線(xiàn)上。 ∴點(diǎn)Q在∠AOB的平分線(xiàn)上
∴ QD=QE
3、總結(jié)提高:學(xué)習(xí)全等三角形應(yīng)注意以下幾個(gè)問(wèn)題
(1)要正確區(qū)分“對(duì)應(yīng)邊”與“對(duì)邊”,“對(duì)應(yīng)角”與“對(duì)角”的不同含義;
。2)表示兩個(gè)三角形全等時(shí),表示對(duì)應(yīng)頂點(diǎn)的字母要寫(xiě)在對(duì)應(yīng)的位置上;
。3)要記住“有三個(gè)角對(duì)應(yīng)相等”或“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等;
。4)時(shí)刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對(duì)頂角”。
練習(xí):
練習(xí)1:如圖,D在AB上,E在AC上,AB=AC ,∠B=∠C,試問(wèn)AD=AE嗎?
2、如圖,OB⊥AB,OC⊥AC,垂足為B,C,OB=OC,AO平分∠BAC嗎?
3、如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來(lái)一樣的三角形模具呢?如果可以,帶那塊去合適?為什么?
4、如圖,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,還需要補(bǔ)
充的條件可以是
5、已知AC=DB, ∠1=∠2.求證: ∠A=∠D
6、如圖,已知,AB∥DE,AB=DE,AF=DC。請(qǐng)問(wèn)圖中有那幾對(duì)全等三角形?請(qǐng)任選一對(duì)給予證明。
7、如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?
8、已知,△ABC和△ECD都是等邊三角形,且點(diǎn)B,C,D在一條直線(xiàn)上求證:BE=AD
9、求證:有一條直角邊和斜邊上的高對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
10、將紙片△ABC沿DE折疊,點(diǎn)A落在點(diǎn)F處,已知∠1+∠2=100°,則∠A=度;
11、如圖6,已知:∠A=90°,AB=BD,ED⊥BC于D.求證:AE=ED
三軸對(duì)稱(chēng)
1、把一個(gè)圖形沿著一條直線(xiàn)折疊,如果直線(xiàn)兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱(chēng)圖形。這條直線(xiàn)就是它的對(duì)稱(chēng)軸。這時(shí)我們也說(shuō)這個(gè)圖形關(guān)于這條直線(xiàn)(成軸)對(duì)稱(chēng)。
2、把一個(gè)圖形沿著某一條直線(xiàn)折疊,如果它能與另一個(gè)圖形完全重合,那么就說(shuō)這兩個(gè)圖關(guān)于這條直線(xiàn)對(duì)稱(chēng)。這條直線(xiàn)叫做對(duì)稱(chēng)軸。折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱(chēng)點(diǎn)。
3、軸對(duì)稱(chēng)的性質(zhì):①關(guān)于某直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形。
、谌绻麅蓚(gè)圖形關(guān)于某條直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線(xiàn)段的垂直平分線(xiàn)。
、圯S對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線(xiàn)段的垂直平分線(xiàn)。
、苋绻麅蓚(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)被同條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng)。
4、線(xiàn)段的垂直平分線(xiàn):經(jīng)過(guò)線(xiàn)段中點(diǎn)并且垂直于這條線(xiàn)段的直線(xiàn),叫做這條線(xiàn)段的垂直平分線(xiàn),也叫中垂線(xiàn)。
性質(zhì):線(xiàn)段垂直平分線(xiàn)上的點(diǎn)與這條線(xiàn)段的兩個(gè)端點(diǎn)的距離相等(純粹性)。
逆定理:與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線(xiàn)段的垂直平分線(xiàn)上。(完備性)
線(xiàn)段垂直平分線(xiàn)的集合定義:線(xiàn)段垂直平分線(xiàn)可以看作是與線(xiàn)段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。
5、用坐標(biāo)表示軸對(duì)稱(chēng)小結(jié):
在平面直角坐標(biāo)系中,關(guān)于x軸對(duì)稱(chēng)的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對(duì)稱(chēng)的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等。
利用軸對(duì)稱(chēng)變換作圖:要在燃?xì)夤艿繪上修建一個(gè)泵站,分別向A、B兩鎮(zhèn)供氣,泵站修在管道什么地方,可使所用的輸氣管道線(xiàn)最短?
6、等腰三角形
1.等腰三角形的性質(zhì)
①.等腰三角形的兩個(gè)底角相等。(等邊對(duì)等角)
②.等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高互相重合。(三線(xiàn)合一)
2、等腰三角形的判定:
如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(等角對(duì)等邊)。
7、等邊三角形
。1)等邊三角形的性質(zhì):等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于600 。
。2)等邊三角形的判定:
①三個(gè)角都相等的三角形是等邊三角形。②有一個(gè)角是60度的等腰三角形是等邊三角形。
。3)在直角三角形中,如果一個(gè)銳角等于300,那么它所對(duì)的直角邊等于斜邊的一半。
練習(xí)1:在△ABC中,AB=AC時(shí),(1)∵AD⊥BC
∴∠ ____= ∠_____;____=____
(2) ∵AD是中線(xiàn)
∴____⊥____; ∠_____= ∠_____
(3) ∵ AD是角平分線(xiàn)
∵_(dá)___ ⊥____;_____=____
2、如圖1,AD是△ABC的角平分線(xiàn),BE⊥AD交AD的延長(zhǎng)線(xiàn)于E,EF∥AC交AB于F,求證:AF=FB.
3、某等腰三角形的兩條邊長(zhǎng)分別為3 cm和6 cm,則它的周長(zhǎng)為:
4、等腰三角形的一個(gè)角為30°,則底角為_(kāi)__________.
5、已知:如圖5,AB=AC,BD⊥AC.求證:∠DBC=1/2∠A。
6、如圖6,在△ABC中,AB=AC,在AB上取一點(diǎn)E,在AC延長(zhǎng)線(xiàn)上取一點(diǎn)F,使BE=CF,EF交BC于G,EM∥CF.求證:EG=FG.
第十四章整式和因式分解
一、冪的4個(gè)運(yùn)算性質(zhì)
1、同底數(shù)冪的乘法:am · an = am+n
2、同底數(shù)冪的除法:am÷an =am-n;a0=1(a≠0)
3、冪的乘方: (am )n = amn
4、積的乘方: (ab)n = anbn
如:(1)(-1)20xx+π0= (x-3)x+2=1,求x.
。2)若10x=5,10y=4,求102x+3y-1的值.
。3)計(jì)算:0.251000×(-2)20xx
二、乘法公式
1、平方差公式:(a+b)(a-b)=a2-b2
2、完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
3、三數(shù)和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc
計(jì)算:(3x+4)(3x-4)-(2x+3)(3x-2)
(1-x)(1+x)(1+x2)(1-x4)
(x+4y-6z)(x-4y+6z)
(x-2y+3z)2
簡(jiǎn)便計(jì)算:(1)98×102
(2)2992
(3) 20062-20xx×20xx
活學(xué)活用:已知a+b=5,ab= -2,求(1)a2+b2(2)a-b
三、因式分解
因式分解方法:一提二套三看
一提:提公因式提負(fù)號(hào)
二套:套平方差、完全平方、十字相乘法
三看:看是否分解完全。
如:x5-16x -4a 2+4ab- b 2 m 2(m-2)-4m(2-m) 4a2- 16(a-2) 2
a、多項(xiàng)式x2-4x+4、x2-4的公因式是
b、已知x2-2mx+16是完全平方式則m為
c、已知x2-8x+m是完全平方式,則m=
d、已知x2-8x+m2是完全平方式,則m=
e、如果(2a+2b+1)(2a+2b-1)=63,那么a+b=
f、如果(a2 +b2 )(a2 +b2 -1)=20,那么a2 +b2 =_____
簡(jiǎn)便計(jì)算:(-2)20xx+(-2)20xx
20xx+20052-20062
3992+399
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
一、知識(shí)點(diǎn):
1、“三線(xiàn)八角”
、偃绾斡删(xiàn)找角:一看線(xiàn),二看型。同位角是“F”型;內(nèi)錯(cuò)角是“Z”型;同旁?xún)?nèi)角是“U”型。
②如何由角找線(xiàn):組成角的三條線(xiàn)中的公共直線(xiàn)就是截線(xiàn)。
2、平行公理:
如果兩條直線(xiàn)都和第三條直線(xiàn)平行,那么這兩條直線(xiàn)也平行。簡(jiǎn)述:平行于同一條直線(xiàn)的兩條直線(xiàn)平行。補(bǔ)充定理:
如果兩條直線(xiàn)都和第三條直線(xiàn)垂直,那么這兩條直線(xiàn)也平行。簡(jiǎn)述:垂直于同一條直線(xiàn)的兩條直線(xiàn)平行。
3、平行線(xiàn)的判定和性質(zhì):
判定定理?xiàng)l件同位角相等內(nèi)錯(cuò)角相等同旁?xún)?nèi)角互補(bǔ)結(jié)論兩直線(xiàn)平行兩直線(xiàn)平行兩直線(xiàn)平行條件兩直線(xiàn)平行兩直線(xiàn)平行兩直線(xiàn)平行性質(zhì)定理結(jié)論同位角相等內(nèi)錯(cuò)角相等同旁?xún)?nèi)角互補(bǔ)
4、圖形平移的性質(zhì):
圖形經(jīng)過(guò)平移,連接各組對(duì)應(yīng)點(diǎn)所得的線(xiàn)段互相平行(或在同一直線(xiàn)上)并且相等。
5、三角形三邊之間的關(guān)系:
三角形的任意兩邊之和大于第三邊;三角形的任意兩邊之差小于第三邊。
若三角形的三邊分別為a、b、c,則abcab
6、三角形中的主要線(xiàn)段:
三角形的高、角平分線(xiàn)、中線(xiàn)。
注意:
、偃切蔚母、角平分線(xiàn)、中線(xiàn)都是線(xiàn)段。
、诟、角平分線(xiàn)、中線(xiàn)的應(yīng)用。
7、三角形的內(nèi)角和:
三角形的3個(gè)內(nèi)角的和等于180°;直角三角形的兩個(gè)銳角互余;
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角。
8、多邊形的內(nèi)角和:
n邊形的內(nèi)角和等于(n-2)180°;任意多邊形的外角和等于360°。
第八章冪的運(yùn)算
nn
冪(power)指乘方運(yùn)算的結(jié)果。a指將a自乘n次(n個(gè)a相乘)。把a(bǔ)看作乘方的結(jié)果,叫做a的n次冪。
對(duì)于任意底數(shù)a,b,當(dāng)m,n為正整數(shù)時(shí),有
。韓m+n
aa=a(同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加)mnm-n
a÷a=a(同底數(shù)冪相除,底數(shù)不變,指數(shù)相減)mnmn(a)=a(冪的乘方,底數(shù)不變,指數(shù)相乘)
nnn
(ab)=aa(積的乘方,把積的每一個(gè)因式乘方,再把所得的冪相乘)0
a=1(a≠0)(任何不等于0的數(shù)的0次冪等于1)-nn
a=1/a(a≠0)(任何不等于0的數(shù)的-n次冪等于這個(gè)數(shù)的n次冪的倒數(shù))
n
科學(xué)記數(shù)法:把一個(gè)絕對(duì)值大于10(或者小于1)的整數(shù)記為a10的形式(其中1≤|a|<10),這種記數(shù)法叫做科學(xué)記數(shù)法.
復(fù)習(xí)知識(shí)點(diǎn):
1.乘方的概念
求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。在a中,a叫做底數(shù),n叫做指數(shù)。
2.乘方的性質(zhì)
。1)負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪的正數(shù)。
2
n(2)正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
第九章整式的乘法與因式分解
一、整式乘除法
單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù),相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字
52525+27
母,則連同它的指數(shù)作為積的一個(gè)因式.acbc=(ab)(cc)=abc=abc注:運(yùn)算順序先乘方,后乘除,最后加減
單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,只在被除式里含有的.字母,則連同它的指數(shù)作為商的一個(gè)因式
單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加,m(a+b+c)=ma+mb+mc注:不重不漏,按照順序,注意常數(shù)項(xiàng)、負(fù)號(hào).本質(zhì)是乘法分配律。
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相乘(a+b)(m+n)=am+an+bm+bn
乘法公式:平方差公式:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.
22
(a+b)(a-b)=a-b
完全平方公式:兩數(shù)和[或差]的平方,等于它們的平方和,加[或減]它們積的2
222
倍.(a±b)=a±2ab+b
因式分解:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,也叫做把這個(gè)多項(xiàng)式分解因式.因式分解方法:
1、提公因式法.關(guān)鍵:找出公因式
公因式三部分:
、傧禂(shù)(數(shù)字)一各項(xiàng)系數(shù)最大公約數(shù);
②字母--各項(xiàng)含有的相同字母;
③指數(shù)--相同字母的最低次數(shù);
步驟:
第一步是找出公因式;
第二步是提取公因式并確定另一因式.
需注意,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來(lái)檢驗(yàn)是否漏項(xiàng).
注意:
、偬崛」蚴胶蟾饕蚴綉(yīng)該是最簡(jiǎn)形式,即分解到“底”;
、谌绻囗(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的.
22
2、公式法.
、賏-b=(a+b)(a-b)兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積a、
222
b可以是數(shù)也可是式子
②a±2ab+b=(a±b)完全平方兩個(gè)數(shù)平方和加上或減去這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和[或差]的平方.3322
、踴-y=(x-y)(x+xy+y)立方差公式
2
3、十字相乘(x+p)(x+q)=x+(p+q)x+pq因式分解三要素:
。1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式
。2)因式分解必須是恒等變形;
。3)因式分解必須分解到每個(gè)因式都不能分解為止.弄清因式分解與整式乘法的內(nèi)在的關(guān)系:互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差
添括號(hào)法則:如括號(hào)前面是正號(hào),括到括號(hào)里的各項(xiàng)都不變號(hào),如括號(hào)前是負(fù)號(hào)各項(xiàng)都得改符號(hào)。用去括號(hào)法則驗(yàn)證
第十章二元一次方程組
。薄⒑袃蓚(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。
。病⒑袃蓚(gè)未知數(shù)的兩個(gè)一次方程所組成的方程組叫做二元一次方程組。
。、二元一次方程組中兩個(gè)方程的公共解叫做二元一次方程組的解。
。、代入消元法:把二元一次方程中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來(lái),再帶入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解。這種方法叫做代入消元法,簡(jiǎn)稱(chēng)代入法。
。怠⒓訙p消元法:當(dāng)方程中兩個(gè)方程的某一未知數(shù)的系數(shù)相等或互為相反數(shù)時(shí),把這兩個(gè)方程的兩邊相加或相減來(lái)消去這個(gè)未知數(shù),從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡(jiǎn)稱(chēng)加減法.
。、二元一次方程組解應(yīng)用題的一般步驟可概括為“審、找、列、解、答”五步,即:
。1)審:通過(guò)審題,把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,分析已知數(shù)和未知數(shù),并用字母表示其中的兩個(gè)未知數(shù);
。2)找:找出能夠表示題意兩個(gè)相等關(guān)系;
。3)列:根據(jù)這兩個(gè)相等關(guān)系列出必需的代數(shù)式,從而列出方程組;
(4)解:解這個(gè)方程組,求出兩個(gè)未知數(shù)的值;
。5)答:在對(duì)求出的方程的解做出是否合理判斷的基礎(chǔ)上,寫(xiě)出答案.
第十一章一元一次不等式
一元一次不等式
重點(diǎn):不等式的性質(zhì)和一元一次不等式的解法。
難點(diǎn):一元一次不等式的解法和一元一次不等式解決在現(xiàn)實(shí)情景下的實(shí)際問(wèn)題。知識(shí)點(diǎn)一:不等式的概念
1.不等式:
用“<”(或“≤”),“>”(或“≥”)等不等號(hào)表示大小關(guān)系的式子,叫做不等式.用“≠”表示不等關(guān)系的式子也是不等式.
要點(diǎn)詮釋?zhuān)?/p>
(1)不等號(hào)的類(lèi)型:
、佟啊佟弊x作“不等于”,它說(shuō)明兩個(gè)量之間的關(guān)系是不等的,但不能明確兩個(gè)量誰(shuí)大誰(shuí)小;
(2)要正確用不等式表示兩個(gè)量的不等關(guān)系,就要正確理解“非負(fù)數(shù)”、“非正數(shù)”、“不大于”、“不小于”等數(shù)學(xué)術(shù)語(yǔ)的含義。
2.不等式的解:
能使不等式成立的未知數(shù)的值,叫做不等式的解。要點(diǎn)詮釋?zhuān)?/p>
由不等式的解的定義可以知道,當(dāng)對(duì)不等式中的未知數(shù)取一個(gè)數(shù),若該數(shù)使不等式成立,則這個(gè)數(shù)就是不等式的一個(gè)解,我們可以和方程的解進(jìn)行對(duì)比理解,一般地,要判斷一個(gè)數(shù)是否為不等式的解,可將此數(shù)代入不等式的左邊和右邊利用不等式的概念進(jìn)行判斷。
3.不等式的解集:
一般地,一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。求不等式的解集的過(guò)程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集與不等式的解的區(qū)別:解集是能使不等式成立的未知數(shù)的取值范圍,是所有解的集合,而不等式的解是使不等式成立的未知數(shù)的值.二者的關(guān)系是:解集包括解,所有的解組成了解集。要點(diǎn)詮釋?zhuān)?/p>
不等式的解集必須符合兩個(gè)條件:
(1)解集中的每一個(gè)數(shù)值都能使不等式成立;
(2)能夠使不等式成立的所有的數(shù)值都在解集中。知識(shí)點(diǎn)
二:不等式的基本性質(zhì)
基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變。符號(hào)語(yǔ)言表示為:如果,那么
基本性質(zhì)2:不等式的兩邊都乘上(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。
符號(hào)語(yǔ)言表示為:如果,并且,那么(或)。
基本性質(zhì)3:不等式的兩邊都乘上(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
符號(hào)語(yǔ)言表示為:如果要點(diǎn)詮釋?zhuān),并且,那么(或?/p>
(1)不等式的基本性質(zhì)1的學(xué)習(xí)與等式的性質(zhì)的學(xué)習(xí)類(lèi)似,可對(duì)比等式的性質(zhì)掌握;
(2)要理解不等式的基本性質(zhì)1中的“同一個(gè)整式”的含義不僅包括相同的數(shù),還有相同的單項(xiàng)式或多項(xiàng)式;
(3)“不等號(hào)的方向不變”,指的是如果原來(lái)是“>”,那么變化后仍是“>”;如果原來(lái)是“≤”,那么變化后仍是“≤”;“不等號(hào)的方向改變”指的是如果原來(lái)是“>”,那么變化后將成為“<”;如果原來(lái)是“≤”,那么變化后將成為“≥”;
(4)運(yùn)用不等式的性質(zhì)對(duì)不等式進(jìn)行變形時(shí),要特別注意性質(zhì)3,在乘(除)同一個(gè)數(shù)時(shí),必須先弄清這個(gè)數(shù)是正數(shù)還是負(fù)數(shù),如果是負(fù)數(shù),要記住不等號(hào)的方向一定要改變。知識(shí)點(diǎn)三:一元一次不等式的概念
只含有一個(gè)未知數(shù),且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不為0.這樣的不等式,叫做一元一次不等式。要點(diǎn)詮釋?zhuān)?/p>
(1)一元一次不等式的概念可以從以下幾方面理解:
、僮笥覂蛇叾际钦(單項(xiàng)式或多項(xiàng)式);
②只含有一個(gè)未知數(shù);
、畚粗獢(shù)的最高次數(shù)為1。
(2)一元一次不等式和一元一次方程可以對(duì)比理解。
相同點(diǎn):二者都是只含有一個(gè)未知數(shù),未知數(shù)的最高次數(shù)都是1,左右兩邊都是整式;不同點(diǎn):一元一次不等式表示不等關(guān)系(用“>”、“<”、“≥”、“≤”連接),一元一次方程表示相等關(guān)系(用“=”連接)。知識(shí)點(diǎn)
四:一元一次不等式的解法
1.解不等式:
求不等式解的過(guò)程叫做解不等式。
2.一元一次不等式的解法:
與一元一次方程的解法類(lèi)似,其根據(jù)是不等式的基本性質(zhì),解一元一次不等式的一般步驟為:
(1)去分母;
(2)去括號(hào);
(3)移項(xiàng);
(4)合并同類(lèi)項(xiàng);
(5)系數(shù)化為
1.要點(diǎn)詮釋?zhuān)?/p>
(1)在解一元一次不等式時(shí),每個(gè)步驟并不一定都要用到,可根據(jù)具體問(wèn)題靈活運(yùn)用
(2)解不等式應(yīng)注意:
①去分母時(shí),每一項(xiàng)都要乘同一個(gè)數(shù),尤其不要漏乘常數(shù)項(xiàng);
②移項(xiàng)時(shí)不要忘記變號(hào);
③去括號(hào)時(shí),若括號(hào)前面是負(fù)號(hào),括號(hào)里的每一項(xiàng)都要變號(hào);
、茉诓坏仁絻蛇叾汲(或除以)同一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向要改變。
3.不等式的解集在數(shù)軸上表示:
在數(shù)軸上可以直觀地把不等式的解集表示出來(lái),能形象地說(shuō)明不等式有無(wú)限多個(gè)解,它對(duì)以后正確確定一元一次不等式組的解集有很大幫助。要點(diǎn)詮釋?zhuān)?/p>
在用數(shù)軸表示不等式的解集時(shí),要確定邊界和方向:
。1)邊界:有等號(hào)的是實(shí)心圓圈,無(wú)等號(hào)的是空心圓圈;
。2)方向:大向右,小向左規(guī)律方法指導(dǎo)(包括對(duì)本部分主要題型、思想、方法的總結(jié))
1、不等式的基本性質(zhì)是解不等式的主要依據(jù)。(性質(zhì)2、3要倍加小心)
2、檢驗(yàn)一個(gè)數(shù)值是不是已知不等式的解,只要把這個(gè)數(shù)代入不等式,然后判斷不等式是否成立,若成立,就是不等式的解;若不成立,則就不是不等式的解。
3、解一元一次不等式是一個(gè)有目的、有根據(jù)、有步驟的不等式變形,最終目的是將原不等式變?yōu)?/p>
或
的形式,其一般步驟是:
(1)去分母;
(2)去括號(hào);
(3)移項(xiàng);
(4)合并同類(lèi)項(xiàng);
(5)化未知數(shù)的系數(shù)為1。
這五個(gè)步驟根據(jù)具體題目,適當(dāng)選用,合理安排順序。但要注意,去分母或化未知數(shù)的系數(shù)為1時(shí),在不等式兩邊同乘以(或除以)同一個(gè)非零數(shù)時(shí),如果是個(gè)正數(shù),不等號(hào)方向不變,如果是個(gè)負(fù)數(shù),不等號(hào)方向改變。
解一元一次不等式的一般步驟及注意事項(xiàng)變形名稱(chēng)具體做法注意事項(xiàng)去分母
。1)不含分母的項(xiàng)不能漏乘
。2)注意分?jǐn)?shù)線(xiàn)有括號(hào)作用,去掉分在不等式兩邊同乘以分母的最小公倍數(shù)母后,如分子是多項(xiàng)式,要加括號(hào)
(3)不等式兩邊同乘以的數(shù)是個(gè)負(fù)數(shù),不等號(hào)方向改變。
。1)運(yùn)用分配律去括號(hào)時(shí),不要漏乘根據(jù)題意,由內(nèi)而外或由外而內(nèi)去括號(hào)均括號(hào)內(nèi)的項(xiàng)可
(2)如果括號(hào)前是“”號(hào),去括號(hào)時(shí),括號(hào)內(nèi)的各項(xiàng)要變號(hào)把含未知數(shù)的項(xiàng)都移到不等式的一邊(通7去括號(hào)移項(xiàng)移項(xiàng)(過(guò)橋)變號(hào)常是左邊),不含未知數(shù)的項(xiàng)移到不等式的另一邊把不等式兩邊的同類(lèi)項(xiàng)分別合并,把不等合并同類(lèi)項(xiàng)式化為或的形式合并同類(lèi)項(xiàng)只是將同類(lèi)項(xiàng)的系數(shù)相加,字母及字母的指數(shù)不變。
在不等式兩邊同除以未知數(shù)的系數(shù),若且,則不等式的解集為;若系數(shù)化1且,則不等式的
。1)分子、分母不能顛倒
。2)不等號(hào)改不改變由系數(shù)的正負(fù)性決定。
則不
。3)計(jì)算順序:先算數(shù)值后定符號(hào)且,解集為;若且等式的解集為;若則不等式的解集為;
4、將一元一次不等式的解集在數(shù)軸上表示出來(lái),是數(shù)學(xué)中數(shù)形結(jié)合思想的重要體現(xiàn),要注意的是“三定”:一是定邊界點(diǎn),二是定方向,三是定空實(shí)。
5、用一元一次不等式解答實(shí)際問(wèn)題,關(guān)鍵在于尋找問(wèn)題中的不等關(guān)系,從而列出不等式并求出不等式的解集,最后解決實(shí)際問(wèn)題。
6、常見(jiàn)不等式的基本語(yǔ)言的意義:
(1)(3)(5)(7),則x是正數(shù);
。2),則x是非正數(shù);
(4),則x大于y;
。6),則x不小于y;
(8),則x是負(fù)數(shù);,則x是非負(fù)數(shù);,則x小于y;,則x不大于y;
(9)或,則x,y同號(hào);
(10)或,則x,y異號(hào);
。11)x,y都是正數(shù),若,則;若,則;
。12)x,y都是負(fù)數(shù),若,則;若,則
第十二章證明
教學(xué)目標(biāo):
1.掌握定義、命題、定理、逆命題、互逆命題等概念,知道一個(gè)命題是真命題,它的逆命題不一定是真命題。
2.基本事實(shí)是其真實(shí)性不加證明的真命題,弄清真命題與定理的區(qū)別。
3.會(huì)用舉反例說(shuō)明一個(gè)命題是假命題;掌握三角形內(nèi)角和定理的證明。重點(diǎn):定義、命題、定理、逆命題、互逆命題等概念的理解與運(yùn)用
難點(diǎn):會(huì)用舉反例說(shuō)明一個(gè)命題是假命題;掌握三角形內(nèi)角和定理的證明。內(nèi)容:
1.以基本事實(shí):“同位角相等,兩直線(xiàn)平行”證明:
(1)“內(nèi)錯(cuò)角相等,兩直線(xiàn)平行”、“同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行”、“平行于同一條直線(xiàn)的兩條直線(xiàn)平行”
2.基本事實(shí):“過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行”“兩直線(xiàn)平行,同位角相等”證明:
。1)兩只相平行,內(nèi)錯(cuò)角相等
。2)兩只相平行,同旁?xún)?nèi)角互補(bǔ)
。3)三角形內(nèi)角和定理”
(4)直角三角形的兩個(gè)銳角互余
。5)有兩個(gè)銳角互余的三角形是直角三角形
。6)三角形的外角等于與它不相鄰的兩個(gè)外角的和
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
有理數(shù):
(1)凡能寫(xiě)成形式的數(shù),都是有理數(shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù).
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類(lèi):①②
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的.數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
一、三角形的有關(guān)概念
1.三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接組成的圖形叫三角形。
三角形的特征:①不在同一直線(xiàn)上;②三條線(xiàn)段;③首尾順次相接;④三角形具有穩(wěn)定性。
2.三角形中的三條重要線(xiàn)段:角平分線(xiàn)、中線(xiàn)、高
(1)角平分線(xiàn):三角形的一個(gè)內(nèi)角的平分線(xiàn)與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。
(2)中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。
(3)高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。
說(shuō)明:①三角形的角平分線(xiàn)、中線(xiàn)、高都是線(xiàn)段;②三角形的角平分線(xiàn)、中線(xiàn)都在三角形內(nèi)部且都交于一點(diǎn);三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長(zhǎng)線(xiàn))相交于一點(diǎn)。
二、等腰三角形的性質(zhì)和判定
(1)性質(zhì)
1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成"等邊對(duì)等角")。
2.等腰三角形的頂角的平分線(xiàn),底邊上的中線(xiàn),底邊上的高重合(簡(jiǎn)寫(xiě)成"等腰三角形的三線(xiàn)合一")。
3.等腰三角形的兩底角的平分線(xiàn)相等(兩條腰上的中線(xiàn)相等,兩條腰上的高相等)。
4.等腰三角形底邊上的垂直平分線(xiàn)到兩條腰的距離相等。
5.等腰三角形的一腰上的.高與底邊的夾角等于頂角的一半。
6.等腰三角形底邊上任意一點(diǎn)到兩腰距離之和等于一腰上的高(需用等面積法證明)。
7.等腰三角形是軸對(duì)稱(chēng)圖形,只有一條對(duì)稱(chēng)軸,頂角平分線(xiàn)所在的直線(xiàn)是它的對(duì)稱(chēng)軸,等邊三角形有三條對(duì)稱(chēng)軸。
(2)判定
在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義)。
在同一三角形中,有兩個(gè)角相等的三角形是等腰三角形(簡(jiǎn)稱(chēng):等角對(duì)等邊)。
三、直角三角形和勾股定理
有一個(gè)角是直角的三角形是直角三角形,在直角三角形中,斜邊中線(xiàn)等于斜邊的一半;30度所對(duì)的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高。
勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
勾股數(shù)一定是正整數(shù),常見(jiàn)勾股數(shù):3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。
方法總結(jié):
當(dāng)不明確直角三角形的斜邊長(zhǎng),應(yīng)把已知最長(zhǎng)邊分為直角邊和斜邊兩種情況討論。無(wú)理數(shù)在數(shù)軸上的表示和線(xiàn)段長(zhǎng)表示通常用到勾股定理。翻折題型常用勾股定理(口訣:翻折求邊找直角,勾股定理設(shè)未知量)
如果三角形的三邊長(zhǎng)a,b,c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。勾股定理的逆定理,常用于判斷三角形的形狀,先確定最大邊(可以設(shè)為c)。
四、初中三角形中線(xiàn)定理
中線(xiàn)定理又稱(chēng)阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線(xiàn)長(zhǎng)度關(guān)系。
定理內(nèi)容:三角形一條中線(xiàn)兩側(cè)所對(duì)邊平方和等于底邊的一半平方與該邊中線(xiàn)平方和的2倍。
中線(xiàn)的定義:任何三角形都有三條中線(xiàn),而且這三條中線(xiàn)都在三角形的內(nèi)部,并交于一點(diǎn)。
由定義可知,三角形的中線(xiàn)是一條線(xiàn)段。
由于三角形有三條邊,所以一個(gè)三角形有三條中線(xiàn)。
且三條中線(xiàn)交于一點(diǎn)。這點(diǎn)稱(chēng)為三角形的重心。
每條三角形中線(xiàn)分得的兩個(gè)三角形面積相等。
五、直角三角形的判定
判定1:有一個(gè)角為90°的三角形是直角三角形。
判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理)。
判定3:若一個(gè)三角形30°內(nèi)角所對(duì)的邊是某一邊的一半,那么這個(gè)三角形是以這條長(zhǎng)邊為斜邊的直角三角形。
判定4:兩個(gè)銳角互余的三角形是直角三角形。
判定5:證明直角三角形全等時(shí)可以利用HL,兩個(gè)三角形的斜邊長(zhǎng)對(duì)應(yīng)相等,以及一個(gè)直角邊對(duì)應(yīng)相等,則兩直角三角形全等。[定理:斜邊和一條直角對(duì)應(yīng)相等的兩個(gè)直角三角形全等。簡(jiǎn)稱(chēng)為HL]
判定6:若兩直線(xiàn)相交且它們的斜率之積互為負(fù)倒數(shù),則這兩直線(xiàn)垂直。
判定7:在一個(gè)三角形中若它一邊上的中線(xiàn)等于這條中線(xiàn)所在邊的一半,那么這個(gè)三角形為直角三角形。
六、勾股定理的逆定理
如果三角形三邊長(zhǎng)a,b,c滿(mǎn)足,那么這個(gè)三角形是直角三角形,其中c為斜邊。
①勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過(guò)“數(shù)轉(zhuǎn)化為形”來(lái)確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長(zhǎng)邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;若時(shí),以a,b,c為三邊的三角形是鈍角三角形;若時(shí),以a,b,c為三邊的三角形是銳角三角形;
、诙ɡ碇衋,b,c及只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng)a,b,c滿(mǎn)足,那么以a,b,c為三邊的三角形是直角三角形,但是b為斜邊.
、酃垂啥ɡ淼哪娑ɡ碓谟脝(wèn)題描述時(shí),不能說(shuō)成:當(dāng)斜邊的平方等于兩條直角邊的平方和時(shí),這個(gè)三角形是直角三角形。
七、三角形定理公式
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊。
三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于180度。
三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和。
三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
三角形的三條角平分線(xiàn)交于一點(diǎn)(內(nèi)心)。
三角形的三邊的垂直平分線(xiàn)交于一點(diǎn)(外心)。
三角形中位線(xiàn)定理:三角形兩邊中點(diǎn)的連線(xiàn)平行于第三邊,并且等于第三邊的一半。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
1、有理數(shù)的加法運(yùn)算:
同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,符號(hào)跟著大的跑;絕對(duì)值相等“零”正好、
2、合并同類(lèi)項(xiàng):
合并同類(lèi)項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣、
3、去、添括號(hào)法則:
去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)、
4、一元一次方程:
已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒、
5、平方差公式:
平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、
1、完全平方公式:
完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央、
2、因式分解:
一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來(lái)分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚、
3、單項(xiàng)式運(yùn)算:
加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行、
4、一元一次不等式解題的一般步驟:
去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類(lèi)項(xiàng)合并好,再把系數(shù)來(lái)除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了、
5、一元一次不等式組的'解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無(wú)處找、
一元二次不等式、一元一次絕對(duì)值不等式的解集:
大(魚(yú))于(吃)取兩邊,。~(yú))于(吃)取中間。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
第一章二次根式
1二次根式:形如()的式子為二次根式;
性質(zhì):()是一個(gè)非負(fù)數(shù);
2二次根式的乘除:;
3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的二次根式進(jìn)行合并。
4海倫—秦九韶公式:,S是三角形的面積,p為。
第二章一元二次方程
1一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開(kāi)方;
公式法:
因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。
3一元二次方程在實(shí)際問(wèn)題中的應(yīng)用
4韋達(dá)定理:設(shè)是方程的兩個(gè)根,那么有
第三章旋轉(zhuǎn)
1圖形的旋轉(zhuǎn)
旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換
性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線(xiàn)段的夾角等于旋轉(zhuǎn)角
旋轉(zhuǎn)前后的圖形全等。
2中心對(duì)稱(chēng):一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱(chēng);
中心對(duì)稱(chēng)圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來(lái)的圖形重合,則說(shuō)這個(gè)圖形是中心對(duì)稱(chēng)圖形;
3關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)
第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直于弦的直徑
圓是軸對(duì)稱(chēng)圖形,任何一條直徑所在的直線(xiàn)都是它的對(duì)稱(chēng)軸;
垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條。
平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;
半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。
5點(diǎn)和圓的位置關(guān)系
點(diǎn)在圓外
點(diǎn)在圓上d=r
點(diǎn)在圓內(nèi)d
定理:不在同一條直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。
三角形的外接圓:經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)的圓,外接圓的圓心是三角形的三條邊的垂直平分線(xiàn)的交點(diǎn),叫做三角形的外心。
6直線(xiàn)和圓的位置關(guān)系
相交d
相切d=r
相離d>r
切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于過(guò)切點(diǎn)的半徑;
切線(xiàn)的判定定理:經(jīng)過(guò)圓的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);
切線(xiàn)長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,這一點(diǎn)和圓心的`連線(xiàn)平分兩條切線(xiàn)的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線(xiàn)的交點(diǎn),為三角形的內(nèi)心。
7圓和圓的位置關(guān)系
外離d>R+r
外切d=R+r
相交R—r
內(nèi)切d=R—r
內(nèi)含d
8正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒(méi)邊所對(duì)的圓心角
正多邊形的邊心距:中心到一邊的距離
9弧長(zhǎng)和扇形面積
扇形面積:
10圓錐的側(cè)面積和全面積
側(cè)面積:
全面積
11(附加)相交弦定理、切割線(xiàn)定理
第五章概率初步
1概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=
3用頻率去估計(jì)概率
第六章二次函數(shù)
1二次函數(shù)=
a>0,開(kāi)口向上;a<0,開(kāi)口向下;
對(duì)稱(chēng)軸:;
頂點(diǎn)坐標(biāo):;
圖像的平移可以參照頂點(diǎn)的平移。
2用函數(shù)觀點(diǎn)看一元二次方程
3二次函數(shù)與實(shí)際問(wèn)題
第七章相似
1圖形的相似
相似多邊形的對(duì)應(yīng)邊的比值相等,對(duì)應(yīng)角相等;
兩個(gè)多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;
相似比:相似多邊形對(duì)應(yīng)邊的比值。
2相似三角形
判定:
平行于三角形一邊的直線(xiàn)和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。
3相似三角形的周長(zhǎng)和面積
相似三角形(多邊形)的周長(zhǎng)的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似
位似圖形:兩個(gè)多邊形相似,而且對(duì)應(yīng)頂點(diǎn)的連線(xiàn)相交于一點(diǎn),對(duì)應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。
第八章銳角三角函數(shù)
1銳角三角函數(shù):正弦、余弦、正切;
2解直角三角形
第九章投影和視圖
1投影:平行投影、中心投影、正投影
2三視圖:俯視圖、主視圖、左視圖。
3三視圖的畫(huà)法
初三數(shù)學(xué)知識(shí)點(diǎn)都知道,但題就做不出來(lái)?
壓軸題一定要做到每天一個(gè),一開(kāi)始可能會(huì)覺(jué)得很難,一個(gè)提一個(gè)小時(shí)也做不完,慢慢會(huì)好的。
去書(shū)店買(mǎi)一些全國(guó)各省市的中考卷來(lái)做。有一些簡(jiǎn)單的題就可以直接過(guò)掉。注意要做選擇題和填空題的倒數(shù)兩個(gè)題,大題第一題,倒數(shù)第一、二題,對(duì)于書(shū)中的知識(shí)點(diǎn)不要死背,要注意每個(gè)定理的推導(dǎo)過(guò)程,推導(dǎo)思路。
其實(shí)所謂的難題壓軸題,就是在一個(gè)題中反映了多個(gè)知識(shí)點(diǎn),在做自己買(mǎi)的套卷的壓軸題時(shí)對(duì)于一個(gè)問(wèn)如果想了15分鐘還沒(méi)有答案就可以大略地看一下答案,想通后就就進(jìn)下一題,明天再自己做這題。這樣會(huì)提高很快,做的題多了你對(duì)題目的熟練程度就提高了,做題的速度也會(huì)提高正確率也會(huì)提高,對(duì)于自己拿手的題就不必多費(fèi)時(shí)間去做了,那是在浪費(fèi)自己的時(shí)間,要把時(shí)間用在刀刃上,做自己錯(cuò)的多的題!
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
圓的定理:
1不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形
4圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7同圓或等圓的半徑相等
8到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
中考數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)口訣
有理數(shù)的加法運(yùn)算
同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,符號(hào)跟著大的跑;絕對(duì)值相等“零”正好。
合并同類(lèi)項(xiàng)
合并同類(lèi)項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號(hào)法則
去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。
一元一次方程
已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。
平方差公式
平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方公式
完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。
因式分解
一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來(lái)分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
單項(xiàng)式運(yùn)算
加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
一元一次不等式解題步驟
去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類(lèi)項(xiàng)合并好,再把系數(shù)來(lái)除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。
一元一次不等式組的解集
大大取較大,小小取較小,小大、大小取中間,大小、小大無(wú)處找。
一元二次不等式、一元一次絕對(duì)值不等式的解集
大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。
分式混合運(yùn)算法則
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);
乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;
變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。
中考數(shù)學(xué)知識(shí)點(diǎn)歸納:平面直角坐標(biāo)系
平面直角坐標(biāo)系
1、平面直角坐標(biāo)系
在平面內(nèi)畫(huà)兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn),不屬于任何象限。
2、點(diǎn)的坐標(biāo)的概念
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理2
函數(shù)
、傥恢玫拇_定與平面直角坐標(biāo)系
位置的確定
坐標(biāo)變換
平面直角坐標(biāo)系內(nèi)點(diǎn)的特征
平面直角坐標(biāo)系內(nèi)點(diǎn)坐標(biāo)的符號(hào)與點(diǎn)的象限位置
對(duì)稱(chēng)問(wèn)題:P(x,y)→Q(x,- y)關(guān)于x軸對(duì)稱(chēng)P(x,y)→Q(- x,y)關(guān)于y軸對(duì)稱(chēng)P(x,y)→Q(- x,-y)關(guān)于原點(diǎn)對(duì)稱(chēng)
變量、自變量、因變量、函數(shù)的定義
函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數(shù)的圖象:變量的變化趨勢(shì)描述
、谝淮魏瘮(shù)與正比例函數(shù)
一次函數(shù)的定義與正比例函數(shù)的定義
一次函數(shù)的圖象:直線(xiàn),畫(huà)法
一次函數(shù)的性質(zhì)(增減性)
一次函數(shù)y=kx+b(k≠0)中k、b符號(hào)與圖象位置
待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)
一次函數(shù)的平移問(wèn)題
一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)
一次函數(shù)的實(shí)際應(yīng)用
一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合
中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理3
中考難點(diǎn)數(shù)學(xué)知識(shí)點(diǎn)
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對(duì)角線(xiàn)上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線(xiàn)兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線(xiàn)的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
中考數(shù)學(xué)最易出錯(cuò)的知識(shí)點(diǎn)
數(shù)與式
易錯(cuò)點(diǎn)1:有理數(shù)、無(wú)理數(shù)以及實(shí)數(shù)的有關(guān)概念理解錯(cuò)誤,相反數(shù)、倒數(shù)、絕對(duì)值的意義概念混淆。以及絕對(duì)值與數(shù)的分類(lèi)。每年選擇必考。
易錯(cuò)點(diǎn)2:實(shí)數(shù)的運(yùn)算要掌握好與實(shí)數(shù)有關(guān)的概念、性質(zhì),靈活地運(yùn)用各種運(yùn)算律,關(guān)鍵是把好符號(hào)關(guān);在較復(fù)雜的運(yùn)算中,不注意運(yùn)算順序或者不合理使用運(yùn)算律,從而使運(yùn)算出現(xiàn)錯(cuò)誤。
易錯(cuò)點(diǎn)3:平方根、算術(shù)平方根、立方根的區(qū)別。填空題必考。
易錯(cuò)點(diǎn)4:求分式值為零時(shí)學(xué)生易忽略分母不能為零。
易錯(cuò)點(diǎn)5:分式運(yùn)算時(shí)要注意運(yùn)算法則和符號(hào)的`變化。當(dāng)分式的分子分母是多項(xiàng)式時(shí)要先因式分解,因式分解要分解到不能再分解為止,注意計(jì)算方法,不能去分母,把分式化為最簡(jiǎn)分式。填空題必考。
易錯(cuò)點(diǎn)6:非負(fù)數(shù)的性質(zhì):幾個(gè)非負(fù)數(shù)的和為0,每個(gè)式子都為0;整體代入法;完全平方式。
易錯(cuò)點(diǎn)7:計(jì)算第一題必考。五個(gè)基本數(shù)的計(jì)算:0指數(shù),三角函數(shù),絕對(duì)值,負(fù)指數(shù),二次根式的化簡(jiǎn)。
易錯(cuò)點(diǎn)8:科學(xué)記數(shù)法。精確度,有效數(shù)字。這個(gè)上海還沒(méi)有考過(guò),知道就好!
易錯(cuò)點(diǎn)9:代入求值要使式子有意義。各種數(shù)式的計(jì)算方法要掌握,一定要注意計(jì)算順序。
方程(組)與不等式(組)
易錯(cuò)點(diǎn)1:各種方程(組)的解法要熟練掌握,方程(組)無(wú)解的意義是找不到等式成立的條件。
易錯(cuò)點(diǎn)2:運(yùn)用等式性質(zhì)時(shí),兩邊同除以一個(gè)數(shù)必須要注意不能為0的情況,還要關(guān)注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個(gè)帶X公因式要回頭檢驗(yàn)!
易錯(cuò)點(diǎn)3:運(yùn)用不等式的性質(zhì)3時(shí),容易忘記改不改變符號(hào)的方向而導(dǎo)致結(jié)果出錯(cuò)。
易錯(cuò)點(diǎn)4:關(guān)于一元二次方程的取值范圍的題目易忽視二次項(xiàng)系數(shù)不為0導(dǎo)致出錯(cuò)。
易錯(cuò)點(diǎn)5:關(guān)于一元一次不等式組有解無(wú)解的條件易忽視相等的情況。
易錯(cuò)點(diǎn)6:解分式方程時(shí)首要步驟去分母,分?jǐn)?shù)相相當(dāng)于括號(hào),易忘記根檢驗(yàn),導(dǎo)致運(yùn)算結(jié)果出錯(cuò)。
易錯(cuò)點(diǎn)7:不等式(組)的解得問(wèn)題要先確定解集,確定解集的方法運(yùn)用數(shù)軸。
易錯(cuò)點(diǎn)8:利用函數(shù)圖象求不等式的解集和方程的解。
中考數(shù)學(xué)易出錯(cuò)的知識(shí)點(diǎn)
函數(shù)
易錯(cuò)點(diǎn)1:各個(gè)待定系數(shù)表示的的意義。
易錯(cuò)點(diǎn)2:熟練掌握各種函數(shù)解析式的求法,有幾個(gè)的待定系數(shù)就要幾個(gè)點(diǎn)值。
易錯(cuò)點(diǎn)3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質(zhì)確定增減性。
易錯(cuò)點(diǎn)4:兩個(gè)變量利用函數(shù)模型解實(shí)際問(wèn)題,注意區(qū)別方程、函數(shù)、不等式模型解決不等領(lǐng)域的問(wèn)題。
易錯(cuò)點(diǎn)5:利用函數(shù)圖象進(jìn)行分類(lèi)(平行四邊形、相似、直角三角形、等腰三角形)以及分類(lèi)的求解方法。
易錯(cuò)點(diǎn)6:與坐標(biāo)軸交點(diǎn)坐標(biāo)一定要會(huì)求。面積值的求解方法,距離之和的最小值的求解方法,距離之差值的求解方法。
易錯(cuò)點(diǎn)7:數(shù)形結(jié)合思想方法的運(yùn)用,還應(yīng)注意結(jié)合圖像性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學(xué)會(huì)從復(fù)雜圖形分解為簡(jiǎn)單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。
易錯(cuò)點(diǎn)8:自變量的取值范圍有:二次根式的被開(kāi)方數(shù)是非負(fù)數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實(shí)數(shù)。
中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理4
中考數(shù)學(xué)較難的知識(shí)點(diǎn)
一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常數(shù)項(xiàng)是-2.
2.一元二次方程3x2+4x-2=0的一次項(xiàng)系數(shù)為4,常數(shù)項(xiàng)是-2.
3.一元二次方程3x2-5x-7=0的二次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
知識(shí)點(diǎn)2:直角坐標(biāo)系與點(diǎn)的位置
1.直角坐標(biāo)系中,點(diǎn)A(3,0)在y軸上。
2.直角坐標(biāo)系中,x軸上的任意點(diǎn)的橫坐標(biāo)為0.
3.直角坐標(biāo)系中,點(diǎn)A(1,1)在第一象限。
4.直角坐標(biāo)系中,點(diǎn)A(-2,3)在第四象限。
5.直角坐標(biāo)系中,點(diǎn)A(-2,1)在第二象限。
知識(shí)點(diǎn)3:已知自變量的值求函數(shù)值
1.當(dāng)x=2時(shí),函數(shù)y=的值為1.
2.當(dāng)x=3時(shí),函數(shù)y=的值為1.
3.當(dāng)x=-1時(shí),函數(shù)y=的值為1.
知識(shí)點(diǎn)4:基本函數(shù)的概念及性質(zhì)
1.函數(shù)y=-8x是一次函數(shù)。
2.函數(shù)y=4x+1是正比例函數(shù)。
3.函數(shù)是反比例函數(shù)。
4.拋物線(xiàn)y=-3(x-2)2-5的開(kāi)口向下。
5.拋物線(xiàn)y=4(x-3)2-10的對(duì)稱(chēng)軸是x=3.
6.拋物線(xiàn)的頂點(diǎn)坐標(biāo)是(1,2)。
7.反比例函數(shù)的圖象在第一、三象限。
知識(shí)點(diǎn)5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
知識(shí)點(diǎn)6:特殊三角函數(shù)值
30°=根號(hào)3/2 。
260°+ cos260°= 1.
3.2sin30°+ tan45°= 2.
45°= 1.
60°+ sin30°= 1.
中考數(shù)學(xué)難點(diǎn)知識(shí)點(diǎn)總結(jié)《幾何》
初中幾何公式:線(xiàn)
1.同角或等角的余角相等
2.過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
3.過(guò)兩點(diǎn)有且只有一條直線(xiàn)
4.兩點(diǎn)之間線(xiàn)段最短
5.同角或等角的補(bǔ)角相等
6.直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7.平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8.如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
初中幾何公式:角
9.同位角相等,兩直線(xiàn)平行
10.內(nèi)錯(cuò)角相等,兩直線(xiàn)平行
11.同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行
12.兩直線(xiàn)平行,同位角相等
13.兩直線(xiàn)平行,內(nèi)錯(cuò)角相等
14.兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)
初中幾何公式:三角形
15.定理三角形兩邊的和大于第三邊
16.推論三角形兩邊的差小于第三邊
17.三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
18.推論1直角三角形的兩個(gè)銳角互余
19.推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20.推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22.邊角邊公理有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23.角邊角公理有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24.推論有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25.邊邊邊公理有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26.斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27.定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28.定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
29.角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
中考數(shù)學(xué)備考難點(diǎn):分式方程
分式方程
1、分式方程
分母里含有未知數(shù)的方程叫做分式方程。
2、分式方程的一般方法
解分式方程的思想是將“分式方程”轉(zhuǎn)化為“整式方程”。它的一般解法是:
(1)去分母,方程兩邊都乘以最簡(jiǎn)公分母
(2)解所得的整式方程
(3)驗(yàn)根:將所得的根代入最簡(jiǎn)公分母,若等于零,就是增根,應(yīng)該舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法
換元法:
換元法是中學(xué)數(shù)學(xué)中的一個(gè)重要的數(shù)學(xué)思想,其應(yīng)用非常廣泛,當(dāng)分式方程具有某種特殊形式,一般的去分母不易解決時(shí),可考慮用換元法。
中考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)整理5
1.數(shù)軸
(1)數(shù)軸的概念:規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸.
數(shù)軸的三要素:原點(diǎn),單位長(zhǎng)度,正方向。
(2)數(shù)軸上的點(diǎn):所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,但數(shù)軸上的點(diǎn)不都表示有理數(shù).(一般取右方向?yàn)檎较,?shù)軸上的點(diǎn)對(duì)應(yīng)任意實(shí)數(shù),包括無(wú)理數(shù).)
(3)用數(shù)軸比較大。阂话銇(lái)說(shuō),當(dāng)數(shù)軸方向朝右時(shí),右邊的數(shù)總比左邊的數(shù)大。
重點(diǎn)知識(shí):
初中數(shù)學(xué)第一課,認(rèn)識(shí)正數(shù)與負(fù)數(shù)!新初一的來(lái)~
2.相反數(shù)
(1)相反數(shù)的概念:只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù).
(2)相反數(shù)的意義:掌握相反數(shù)是成對(duì)出現(xiàn)的,不能單獨(dú)存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個(gè)數(shù),它們分別在原點(diǎn)兩旁且到原點(diǎn)距離相等。
(3)多重符號(hào)的化簡(jiǎn):與“+”個(gè)數(shù)無(wú)關(guān),有奇數(shù)個(gè)“﹣”號(hào)結(jié)果為負(fù),有偶數(shù)個(gè)“﹣”號(hào),結(jié)果為正。
(4)規(guī)律方法總結(jié):求一個(gè)數(shù)的相反數(shù)的方法就是在這個(gè)數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時(shí)m+n是一個(gè)整體,在整體前面添負(fù)號(hào)時(shí),要用小括號(hào)。
3.絕對(duì)值
1.概念:數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值。
、倩橄喾磾(shù)的兩個(gè)數(shù)絕對(duì)值相等;
、诮^對(duì)值等于一個(gè)正數(shù)的數(shù)有兩個(gè),絕對(duì)值等于0的數(shù)有一個(gè),沒(méi)有絕對(duì)值等于負(fù)數(shù)的數(shù).
、塾欣頂(shù)的絕對(duì)值都是非負(fù)數(shù).
2.如果用字母a表示有理數(shù),則數(shù)a絕對(duì)值要由字母a本身的取值來(lái)確定:
、佼(dāng)a是正有理數(shù)時(shí),a的絕對(duì)值是它本身a;
②當(dāng)a是負(fù)有理數(shù)時(shí),a的絕對(duì)值是它的相反數(shù)﹣a;
、郛(dāng)a是零時(shí),a的絕對(duì)值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
中考數(shù)學(xué)知識(shí)點(diǎn)
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫(xiě)成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線(xiàn),它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱(chēng)。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線(xiàn)的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,y的取值范圍是y0;
、诋(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x的增大而減小。
、賦的取值范圍是x0,y的取值范圍是y0;
、诋(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過(guò)點(diǎn)P作軸、軸的垂線(xiàn),垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無(wú)論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
二次函數(shù)中考數(shù)學(xué)知識(shí)點(diǎn)
二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點(diǎn)式:
(3)當(dāng)拋物線(xiàn)與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒(méi)有交點(diǎn),則不能這樣表示。
注意:拋物線(xiàn)位置由決定.
(1)決定拋物線(xiàn)的開(kāi)口方向
①開(kāi)口向上.
、陂_(kāi)口向下.
(2)決定拋物線(xiàn)與y軸交點(diǎn)的位置.
①圖象與y軸交點(diǎn)在x軸上方.
、趫D象過(guò)原點(diǎn).
③圖象與y軸交點(diǎn)在x軸下方.
(3)決定拋物線(xiàn)對(duì)稱(chēng)軸的位置(對(duì)稱(chēng)軸:)
、偻(hào)對(duì)稱(chēng)軸在y軸左側(cè).
、趯(duì)稱(chēng)軸是y軸.
、郛愄(hào)對(duì)稱(chēng)軸在y軸右側(cè).
(4)頂點(diǎn)坐標(biāo).
(5)決定拋物線(xiàn)與x軸的交點(diǎn)情況.
、佟>0拋物線(xiàn)與x軸有兩個(gè)不同交點(diǎn).
、凇=0拋物線(xiàn)與x軸有的公共點(diǎn)(相切).
③△<0拋物線(xiàn)與x軸無(wú)公共點(diǎn).
(6)二次函數(shù)是否具有、最小值由a判斷.
、佼(dāng)a>0時(shí),拋物線(xiàn)有最低點(diǎn),函數(shù)有最小值.
②當(dāng)a<0時(shí),拋物線(xiàn)有點(diǎn),函數(shù)有值.
(7)的符號(hào)的判定:
表達(dá)式,請(qǐng)代值,對(duì)應(yīng)y值定正負(fù);
對(duì)稱(chēng)軸,用處多,三種式子相約;
軸兩側(cè)判,左同右異中為0;
1的兩側(cè)判,左同右異中為0;
-1兩側(cè)判,左異右同中為0.
(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項(xiàng),上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過(guò)頂點(diǎn)來(lái)尋找。
(9)對(duì)稱(chēng):關(guān)于x軸對(duì)稱(chēng)的解析式為,關(guān)于y軸對(duì)稱(chēng)的解析式為,關(guān)于原點(diǎn)軸對(duì)稱(chēng)的解析式為,在頂點(diǎn)處翻折后的解析式為(a相反,定點(diǎn)坐標(biāo)不變)。
(10)結(jié)論:
、俣魏瘮(shù)(與x軸只有一個(gè)交點(diǎn)二次函數(shù)的頂點(diǎn)在x軸上Δ=0;
、诙魏瘮(shù)(的頂點(diǎn)在y軸上二次函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);
③二次函數(shù)(經(jīng)過(guò)原點(diǎn),則。
(11)二次函數(shù)的解析式:
、僖话闶剑(,用于已知三點(diǎn)。
、陧旤c(diǎn)式:,用于已知頂點(diǎn)坐標(biāo)或最值或?qū)ΨQ(chēng)軸。
(3)交點(diǎn)式:,其中、是二次函數(shù)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)。若已知對(duì)稱(chēng)軸和在x軸上的截距,也可用此式。
圓柱體要領(lǐng):如果用垂直于軸的兩個(gè)平面去截圓柱面,那么兩個(gè)截面和圓柱面所圍成的幾何體叫做直圓柱,簡(jiǎn)稱(chēng)圓柱。
圓柱體的定義
1、旋轉(zhuǎn)定義法:一個(gè)長(zhǎng)方形以一邊為軸順時(shí)針或逆時(shí)針旋轉(zhuǎn)一周,所經(jīng)過(guò)的空間叫做圓柱體。
2、平移定義法:以一個(gè)圓為底面,上或下移動(dòng)一定的距離,所經(jīng)過(guò)的空間叫做圓柱體。
性質(zhì) 1.圓柱的兩個(gè)圓面叫底面,周?chē)拿娼袀?cè)面,一個(gè)圓柱體是由兩個(gè)底面和一個(gè)側(cè)面組成的。
2.圓柱體的兩個(gè)底面是完全相同的兩個(gè)圓面。兩個(gè)底面之間的距離是圓柱體的高。
3.圓柱體的側(cè)面是一個(gè)曲面,圓柱體的側(cè)面的展開(kāi)圖是一個(gè)長(zhǎng)方形或正方形。
圓柱的側(cè)面積=底面周長(zhǎng)x高,即:
S側(cè)面積=Ch=2πrh
底面周長(zhǎng)C=2πr=πd
圓柱的表面積=側(cè)面積+底面積x2=2πr2+Ch=2πr(r+h)
4.圓柱的體積=底面積x高
即V=S底面積×h=(π×r×r)h
5.等底等高的圓柱的體積是圓錐的3倍6.圓柱體可以用一個(gè)平行四邊形圍成
圓柱的表面積=圓柱的表面積=側(cè)面積+底面積x2
6.把圓柱沿底面直徑分成兩個(gè)同樣的部分,每一個(gè)部分叫半圓柱。這時(shí)與原來(lái)的圓柱比較,體積不變、表面積增加兩個(gè)直徑X高的長(zhǎng)方形。
7.圓柱的軸截面是直徑x高的長(zhǎng)方形,橫截面是與底面相同的圓。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類(lèi)代數(shù)式叫單項(xiàng)式;數(shù)字或字母的乘積叫單項(xiàng)式(單獨(dú)的一個(gè)數(shù)字或字母也是單項(xiàng)式)。
2.系數(shù):單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù)。任何一個(gè)非零數(shù)的零次方等于1.
3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式。
4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。
5.常數(shù)項(xiàng):不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
6.多項(xiàng)式的排列
(1)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從大到小的順序排列起來(lái),叫做把多項(xiàng)式按這個(gè)字母降冪排列。
(2)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大的順序排列起來(lái),叫做把多項(xiàng)式按這個(gè)字母升冪排列。
7.多項(xiàng)式的排列時(shí)注意:
(1)由于單項(xiàng)式的項(xiàng),包括它前面的性質(zhì)符號(hào),因此在排列時(shí),仍需把每一項(xiàng)的性質(zhì)符號(hào)看作是這一項(xiàng)的一部分,一起移動(dòng)。
(2)有兩個(gè)或兩個(gè)以上字母的多項(xiàng)式,排列時(shí),要注意:
a.先確認(rèn)按照哪個(gè)字母的指數(shù)來(lái)排列。
b.確定按這個(gè)字母向里排列,還是向外排列。
(3)整式:
單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)為整式。
8.多項(xiàng)式的加法:
多項(xiàng)式的加法,是指多項(xiàng)式的同類(lèi)項(xiàng)的系數(shù)相加(即合并同類(lèi)項(xiàng))。
9.同類(lèi)項(xiàng):所含字母相同,并且相同字母的次數(shù)也分別相同的項(xiàng)叫做同類(lèi)項(xiàng)。
10.合并同類(lèi)項(xiàng):多項(xiàng)式中的同類(lèi)項(xiàng)可以合并,叫做合并同類(lèi)項(xiàng),合并同類(lèi)項(xiàng)的法則是:同類(lèi)項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。
11.掌握同類(lèi)項(xiàng)的概念時(shí)注意:
(1)判斷幾個(gè)單項(xiàng)式或項(xiàng),是否是同類(lèi)項(xiàng),就要掌握兩個(gè)條件:
、偎帜赶嗤。
、谙嗤帜傅拇螖(shù)也相同。
(2)同類(lèi)項(xiàng)與系數(shù)無(wú)關(guān),與字母排列的順序也無(wú)關(guān)。
(3)所有常數(shù)項(xiàng)都是同類(lèi)項(xiàng)。
12.合并同類(lèi)項(xiàng)步驟:
(1)準(zhǔn)確的找出同類(lèi)項(xiàng);
(2)逆用分配律,把同類(lèi)項(xiàng)的系數(shù)加在一起(用小括號(hào)),字母和字母的指數(shù)不變;
(3)寫(xiě)出合并后的結(jié)果。
13.在掌握合并同類(lèi)項(xiàng)時(shí)注意:
(1)如果兩個(gè)同類(lèi)項(xiàng)的'系數(shù)互為相反數(shù),合并同類(lèi)項(xiàng)后,結(jié)果為0;
(2)不要漏掉不能合并的項(xiàng);
(3)只要不再有同類(lèi)項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。
14.整式的拓展
整式的乘除:重點(diǎn)是整式的乘除,尤其是其中的乘法公式。乘法公式的結(jié)構(gòu)特征以及公式中的字母的廣泛含義,學(xué)生不易掌握.因此,乘法公式的靈活運(yùn)用是難點(diǎn),添括號(hào)(或去括號(hào))時(shí),括號(hào)中符號(hào)的處理是另一個(gè)難點(diǎn)。添括號(hào)(或去括號(hào))是對(duì)多項(xiàng)式的變形,要根據(jù)添括號(hào)(或去括號(hào))的法則進(jìn)行。在整式的乘除中,單項(xiàng)式的乘除是關(guān)鍵,這是因?yàn),一般多?xiàng)式的乘除都要“轉(zhuǎn)化”為單項(xiàng)式的乘除。
整式四則運(yùn)算的主要題型有:
(1)單項(xiàng)式的四則運(yùn)算
此類(lèi)題目多以選擇題和應(yīng)用題的形式出現(xiàn),其特點(diǎn)是考查單項(xiàng)式的四則運(yùn)算。
(2)單項(xiàng)式與多項(xiàng)式的運(yùn)算
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
1.如果把解題比做打仗,那么解題者的“兵器”就是數(shù)學(xué)基礎(chǔ)知識(shí),“兵力”就是數(shù)學(xué)基本方法,而調(diào)動(dòng)數(shù)學(xué)基礎(chǔ)知識(shí)、運(yùn)用數(shù)學(xué)思想方法的數(shù)學(xué)解題思想則正是“兵法”。
2.數(shù)學(xué)家存在的主要理由就是解決問(wèn)題。因此,數(shù)學(xué)的真正的組成部分是問(wèn)題和解答。“問(wèn)題是數(shù)學(xué)的心臟”。
3.問(wèn)題反映了現(xiàn)有水平與客觀需要的矛盾,對(duì)學(xué)生來(lái)說(shuō),就是已知和未知的矛盾。問(wèn)題就是矛盾。對(duì)于學(xué)生而言,問(wèn)題有三個(gè)特征:
。1)接受性:學(xué)生愿意解決并且具有解決它的知識(shí)基礎(chǔ)和能力基礎(chǔ)。
。2)障礙性:學(xué)生不能直接看出它的解法和答案,而必須經(jīng)過(guò)思考才能解決。
(3)探究性:學(xué)生不能按照現(xiàn)成的的套路去解,需要進(jìn)行探索,尋找新的處理方法。
4.練習(xí)型的問(wèn)題具有教學(xué)性,它的結(jié)論為數(shù)學(xué)家或教師所已知,其之成為問(wèn)題僅相對(duì)于教學(xué)或?qū)W生而言,包括一個(gè)待計(jì)算的答案、一個(gè)待證明的結(jié)論、一個(gè)待作出的圖形、一個(gè)待判斷的命題、一個(gè)待解決的實(shí)際問(wèn)題。
5.“問(wèn)題解決”有不同的解釋?zhuān)容^典型的觀點(diǎn)可歸納為4種:
。1)問(wèn)題解決是心理活動(dòng)。面臨新情境、新課題,發(fā)現(xiàn)它與主客觀需要的矛盾而自己卻沒(méi)有現(xiàn)成對(duì)策時(shí),所引起的尋求處理辦法的一種活動(dòng)。
(2)問(wèn)題解決是一個(gè)探究過(guò)程。把“問(wèn)題解決”定義為“將先前已獲得的知識(shí)用于新的、不熟悉的情境的過(guò)程”。這就是說(shuō),問(wèn)題解決是一個(gè)發(fā)現(xiàn)的過(guò)程、探索的過(guò)程、創(chuàng)新的過(guò)程。
(3)問(wèn)題解決是一個(gè)學(xué)習(xí)目的!皩W(xué)習(xí)數(shù)學(xué)的主要目的在于問(wèn)題解決”。因而,學(xué)習(xí)怎樣解決問(wèn)題就成為學(xué)習(xí)數(shù)學(xué)的根本原因。此時(shí),問(wèn)題解決就獨(dú)立于特殊的問(wèn)題,獨(dú)立于一般過(guò)程或方法,也獨(dú)立于數(shù)學(xué)的具體內(nèi)容。
。4)問(wèn)題解決是一種生存能力。重視問(wèn)題解決能力的培養(yǎng)、發(fā)展問(wèn)題解決的能力,其目的之一是,在這個(gè)充滿(mǎn)疑問(wèn)、有時(shí)連問(wèn)題和答案都是不確定的世界里,學(xué)習(xí)生存的本領(lǐng)。
6.解題研究存在一些誤區(qū),首先一個(gè)表現(xiàn)是,用現(xiàn)成的例子說(shuō)明現(xiàn)成的觀點(diǎn),或用現(xiàn)成的觀點(diǎn)解釋現(xiàn)成的例子。其次一個(gè)表現(xiàn)是,長(zhǎng)期徘徊在一招一式的歸類(lèi)上,缺少觀點(diǎn)上的提高或?qū)嵸|(zhì)性的突破。第三個(gè)表現(xiàn)是,多研究“怎樣解”,較少問(wèn)“為什么這樣解”。在這些誤區(qū)里,“解題而不立法、作答而不立論”。
7.人的思維依賴(lài)于必要的知識(shí)和經(jīng)驗(yàn),數(shù)學(xué)知識(shí)正是數(shù)學(xué)解題思維活動(dòng)的出發(fā)點(diǎn)與憑借。豐富的知識(shí)并加以?xún)?yōu)化的結(jié)構(gòu)能為題意的本質(zhì)理解與思路的迅速尋找創(chuàng)造成功的條件。解題研究的一代宗師波利亞說(shuō)過(guò):“貨源充足和組織良好的.知識(shí)倉(cāng)庫(kù)是一個(gè)解題者的重要資本”。
8.熟練掌握數(shù)學(xué)基礎(chǔ)知識(shí)的體系。對(duì)于中學(xué)數(shù)學(xué)解題來(lái)說(shuō),應(yīng)如數(shù)學(xué)家珍說(shuō)出教材的概念系統(tǒng)、定理系統(tǒng)、符號(hào)系統(tǒng)。還應(yīng)掌握中學(xué)數(shù)學(xué)競(jìng)賽涉及的基礎(chǔ)理論。深刻理解數(shù)學(xué)概念、準(zhǔn)確掌握數(shù)學(xué)定理、公式和法則。熟悉基本規(guī)則和常用的方法,不斷積累數(shù)學(xué)技巧。
9.數(shù)學(xué)的本質(zhì)活動(dòng)是思維。思維的對(duì)象是概念,思維的方式是邏輯。當(dāng)這種思維與新事物接觸時(shí),將出現(xiàn)“相容”和“不容”的兩種可能。出現(xiàn)“相容”時(shí),產(chǎn)生新結(jié)果,且被原概念吸收,并發(fā)展成新概念;當(dāng)出現(xiàn)“不容”時(shí),則產(chǎn)生了所謂的問(wèn)題。這時(shí),思維出現(xiàn)迂回,甚至?xí)簳r(shí)退回原地,將原概念擴(kuò)大或?qū)⒃壿嬜兪剑钡叫滤季S與事物相容為止。至此,也產(chǎn)生新的結(jié)果,也被原思維吸收。這就是一個(gè)思維活動(dòng)的全過(guò)程。
10.解題能力,表現(xiàn)于發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的敏銳、洞察力與整體把握。其主要成分是3種基本的數(shù)學(xué)能力(運(yùn)算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:
。1)掌握解題的科學(xué)程序;
。2)掌握數(shù)學(xué)中各種常用的思維方法,如觀察、試驗(yàn)、歸納、演繹、類(lèi)比、分析、綜合、抽象、概括等;
。3)掌握解題的基本策略,能“因題制宜”地選擇對(duì)口的解題思路,使用有效的解題方法、調(diào)動(dòng)精明的解題技巧;
。4)具有敏銳的直覺(jué)。應(yīng)該明白,我們的數(shù)學(xué)解題活動(dòng)是在縱橫交錯(cuò)的數(shù)學(xué)關(guān)系中進(jìn)行的,在這個(gè)過(guò)程中,我們從一種可能性過(guò)渡到另一種可能性時(shí),并非對(duì)每一個(gè)數(shù)學(xué)細(xì)節(jié)都洞察無(wú)遺,并非總能借助于“三段論”的橋梁,而是在短時(shí)間內(nèi)朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達(dá)到對(duì)某種數(shù)學(xué)對(duì)象的本質(zhì)領(lǐng)悟:
11.解題具有實(shí)踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過(guò)模仿和實(shí)踐來(lái)學(xué)到它……你想學(xué)會(huì)游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會(huì),而只能靠自己學(xué)會(huì)”。
12.所謂解題經(jīng)驗(yàn),就是某些數(shù)學(xué)知識(shí)、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無(wú)效的無(wú)序組合(它從反面向我們提供有效的有序組合)。成功經(jīng)驗(yàn)所獲得的有序組合,就好像建筑上的預(yù)制構(gòu)件(或稱(chēng)為思維組塊),遇到合適的場(chǎng)合,可以原封不動(dòng)地把它搬上去。
13.認(rèn)為解題純粹是一種智能活動(dòng)顯然是錯(cuò)誤的;決心與情緒所起的作用非常重要。教育學(xué)生解題是一種意志教育。當(dāng)學(xué)生求解那些對(duì)他來(lái)說(shuō)并不太容易的題目時(shí),他學(xué)會(huì)了敗而不餒,學(xué)會(huì)了贊賞微小的進(jìn)展,學(xué)會(huì)了等待主要念頭的萌動(dòng),學(xué)會(huì)了當(dāng)主要念頭出現(xiàn)后如何全力以赴,直撲問(wèn)題的核心或主干;當(dāng)一旦突破關(guān)卡,如何去占領(lǐng)問(wèn)題的至高點(diǎn),并冷靜地府視全局,從而得到問(wèn)題的完善解決。如果學(xué)生在解題過(guò)程中沒(méi)有機(jī)會(huì)嘗盡為求解而奮斗的喜怒哀樂(lè),那么他的數(shù)學(xué)解題訓(xùn)練就在最重要的地方失敗了。
14.教師的例題教學(xué)要暴露自己思維的真實(shí)過(guò)程,老師備課時(shí),遇上的曲折和錯(cuò)誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺(tái)裝神弄巧,得心應(yīng)手,左右逢源,把自己打扮成超人,將給學(xué)生的學(xué)習(xí)產(chǎn)生誤導(dǎo)。這樣的教師越高明,學(xué)生越自卑。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
第一章實(shí)數(shù)
考點(diǎn)一、實(shí)數(shù)的概念及分類(lèi)(3分)
1、實(shí)數(shù)的分類(lèi)
正有理數(shù)
有理數(shù)零有限小數(shù)和無(wú)限循環(huán)小數(shù)實(shí)數(shù)負(fù)有理數(shù)正無(wú)理數(shù)
無(wú)理數(shù)無(wú)限不循環(huán)小數(shù)負(fù)無(wú)理數(shù)
整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
正整數(shù)又叫自然數(shù)。
正整數(shù)、零、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為有理數(shù)。
2、無(wú)理數(shù)
在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)之,歸納起來(lái)有四類(lèi):
。1)開(kāi)方開(kāi)不盡的數(shù),如7,32等;
。2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如
。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001等;
(4)某些三角函數(shù),如sin60o等
考點(diǎn)二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值(3分)
1、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),如果a與b互為相反數(shù),則有a+b=0,a=b,反之亦成立。
2、絕對(duì)值
一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對(duì)值時(shí)它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)。
考點(diǎn)三、平方根、算數(shù)平方根和立方根(310分)
1、平方根
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(或二次方跟)。一個(gè)數(shù)有兩個(gè)平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒(méi)有平方根。正數(shù)a的平方根記做“。a”
π+8等;
2、算術(shù)平方根
正數(shù)a的正的平方根叫做a的算術(shù)平方根,記作“a”。正數(shù)和零的算術(shù)平方根都只有一個(gè),零的算術(shù)平方根是零。a(a0)a0
a2a;注意a的'雙重非負(fù)性:
-a(a考點(diǎn)六、實(shí)數(shù)的運(yùn)算(做題的基礎(chǔ),分值相當(dāng)大)
1、加法交換律abba
2、加法結(jié)合律(ab)ca(bc)
3、乘法交換律abba
4、乘法結(jié)合律(ab)ca(bc)
5、乘法對(duì)加法的分配律a(bc)abac
6、實(shí)數(shù)混合運(yùn)算時(shí),對(duì)于運(yùn)算順序有什么規(guī)定?
實(shí)數(shù)混合運(yùn)算時(shí),將運(yùn)算分為三級(jí),加減為一級(jí)運(yùn)算,乘除為二能為運(yùn)算,乘方為三級(jí)運(yùn)算。同級(jí)運(yùn)算時(shí),從左到右依次進(jìn)行;不是同級(jí)的混合運(yùn)算,先算乘方,再算乘除,而后才算加減;運(yùn)算中如有括號(hào)時(shí),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)的順序進(jìn)行。
7、有理數(shù)除法運(yùn)算法則就什么?
兩有理數(shù)除法運(yùn)算法則可用兩種方式來(lái)表述:第一,除以一個(gè)不等于零的數(shù),等于乘以這個(gè)數(shù)的倒數(shù);第二,兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。零除以任何一個(gè)不為零的數(shù),商都是零。
8、什么叫有理數(shù)的乘方??jī)?底?shù)?指數(shù)?
相同因數(shù)相乘積的運(yùn)算叫乘方,乘方的結(jié)果叫冪,相同因數(shù)的個(gè)數(shù)叫指數(shù),這個(gè)因數(shù)叫底數(shù)。記作:an
9、有理數(shù)乘方運(yùn)算的法則是什么?
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù)。零的任何正整數(shù)冪都是零。
10、加括號(hào)和去括號(hào)時(shí)各項(xiàng)的符號(hào)的變化規(guī)律是什么?
去(加)括號(hào)時(shí)如果括號(hào)外的因數(shù)是正數(shù),去(加)括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)的式子相應(yīng)各項(xiàng)的符號(hào)相同;括號(hào)外的因數(shù)是負(fù)數(shù)去(加)括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相反。
平行線(xiàn)與相交線(xiàn)
知識(shí)要點(diǎn)
一.余角、補(bǔ)角、對(duì)頂角
1,余角:如果兩個(gè)角的和是直角,那么稱(chēng)這兩個(gè)角互為余角.
2,補(bǔ)角:如果兩個(gè)角的和是平角,那么稱(chēng)這兩個(gè)角互為補(bǔ)角.
3,對(duì)頂角:如果兩個(gè)角有公共頂點(diǎn),并且它們的兩邊互為反向延長(zhǎng)線(xiàn),這樣的兩個(gè)角叫做對(duì)頂角.
4,互為余角的有關(guān)性質(zhì):
、佟1+∠2=90°,則∠1、∠2互余;反過(guò)來(lái),若∠1,∠2互余,
則∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,則∠2=∠3.
5,互為補(bǔ)角的有關(guān)性質(zhì):①若∠A+∠B=180°,則∠A、∠B互補(bǔ);反過(guò)來(lái),若∠A、∠B互補(bǔ),則∠A+∠B=180°.
②同角或等角的補(bǔ)角相等.如果∠A+∠C=180°,∠A+∠B=180°,則∠B=∠C.
6,對(duì)頂角的性質(zhì):對(duì)頂角相等.
二.同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角的認(rèn)識(shí)及平行線(xiàn)的性質(zhì)
7,同一平面內(nèi)兩條直線(xiàn)的位置關(guān)系是:相交或平行.
8,“三線(xiàn)八角”的識(shí)別:
三線(xiàn)八角指的是兩條直線(xiàn)被第三條直線(xiàn)所截而成的八個(gè)角.
正確認(rèn)識(shí)這八個(gè)角要抓。和唤俏恢孟嗤础巴浴焙汀巴(guī)”;內(nèi)錯(cuò)角要抓住“內(nèi)部,兩旁”;同旁?xún)?nèi)角要抓住“內(nèi)部、同旁”.三.平行線(xiàn)的性質(zhì)與判定
9,平行線(xiàn)的定義:在同一平面內(nèi),不相交的兩條直線(xiàn)是平行線(xiàn).
10,平行線(xiàn)的性質(zhì):兩條平行線(xiàn)被第三條直線(xiàn)所截,同位角相等,內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ).
11,過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)平行.
12,兩條平行線(xiàn)之間的距離是指在一條直線(xiàn)上任意找一點(diǎn)向另一條直線(xiàn)作垂線(xiàn),垂線(xiàn)段的長(zhǎng)度就是兩條平行線(xiàn)之間的距離.
13,如果兩條直線(xiàn)都與第三條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行.
14,平行線(xiàn)的判定:兩條直線(xiàn)被第三條直線(xiàn)所截,如果同位角相等,那么這兩條直線(xiàn)平行;如果內(nèi)錯(cuò)角相等.那么這兩條直線(xiàn)平行;如果同旁?xún)?nèi)角互補(bǔ),那么這兩條直線(xiàn)平行.這三個(gè)條件都是由角的數(shù)量關(guān)系(相等或互補(bǔ))來(lái)確定直線(xiàn)的位置關(guān)系(平行)的,因此能否找到兩直線(xiàn)平行的條件,關(guān)鍵是能否正確地找到或識(shí)別出同位角,內(nèi)錯(cuò)角或同旁?xún)?nèi)角.
15,常見(jiàn)的幾種兩條直線(xiàn)平行的結(jié)論:
。1)兩條平行線(xiàn)被第三條直線(xiàn)所截,一組同位角的角平分線(xiàn)平行;
(2)兩條平行線(xiàn)被第三條直線(xiàn)所截,一組內(nèi)錯(cuò)角的角平分線(xiàn)互相平行.
四.尺規(guī)作圖
16,只用沒(méi)有刻度的直尺和圓規(guī)的作圖的方法稱(chēng)為尺規(guī)作圖.用尺規(guī)可以作一條線(xiàn)段等于已知線(xiàn)段,也可以作一個(gè)角等于已知角.利用這兩種兩種基本作圖可以作出兩條線(xiàn)段的和或差,也可以作出兩個(gè)角的和或差.
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
中考數(shù)學(xué)知識(shí)點(diǎn):分式混合運(yùn)算法則
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).
分式混合運(yùn)算法則:
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);
乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;
變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).
中考數(shù)學(xué)二次根式的加減法知識(shí)點(diǎn)總結(jié)
二次根式的加減法
知識(shí)點(diǎn)1:同類(lèi)二次根式
(Ⅰ)幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開(kāi)方數(shù)相同,這幾個(gè)二次根式叫做同類(lèi)二次根式,如這樣的二次根式都是同類(lèi)二次根式。
(Ⅱ)判斷同類(lèi)二次根式的方法:(1)首先將不是最簡(jiǎn)形式的二次根式化為最簡(jiǎn)二次根式以后,再看被開(kāi)方數(shù)是否相同。(2)幾個(gè)二次根式是否是同類(lèi)二次根式,只與被開(kāi)方數(shù)及根指數(shù)有關(guān),而與根號(hào)外的因式無(wú)關(guān)。
知識(shí)點(diǎn)2:合并同類(lèi)二次根式的`方法
合并同類(lèi)二次根式的理論依據(jù)是逆用乘法對(duì)加法的分配律,合并同類(lèi)二次根式,只把它們的系數(shù)相加,根指數(shù)和被開(kāi)方數(shù)都不變,不是同類(lèi)二次根式的不能合并。
知識(shí)點(diǎn)3:二次根式的加減法則
二次根式相加減先把各個(gè)二次根式化成最簡(jiǎn)二次根式,再把同類(lèi)二次根式合并,合并的方法為系數(shù)相加,根式不變。
知識(shí)點(diǎn)4:二次根式的混合運(yùn)算方法和順序
運(yùn)算方法是利用加、減、乘、除法則以及與多項(xiàng)式乘法類(lèi)似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號(hào)的先算括號(hào)內(nèi)的。
知識(shí)點(diǎn)5:二次根式的加減法則與乘除法則的區(qū)別
乘除法中,系數(shù)相乘,被開(kāi)方數(shù)相乘,與兩根式是否是同類(lèi)根式無(wú)關(guān),加減法中,系數(shù)相加,被開(kāi)方數(shù)不變而且兩根式須是同類(lèi)最簡(jiǎn)根式。
中考數(shù)學(xué)知識(shí)點(diǎn):直角三角形
★重點(diǎn)★解直角三角形
☆內(nèi)容提要☆
一、三角函數(shù)
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函數(shù)值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;…
4.三角函數(shù)值隨角度變化的關(guān)系
5.查三角函數(shù)表
二、解直角三角形
1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。
2.依據(jù):①邊的關(guān)系:
、诮堑年P(guān)系:A+B=90°
、圻吔顷P(guān)系:三角函數(shù)的定義。
注意:盡量避免使用中間數(shù)據(jù)和除法。
三、對(duì)實(shí)際問(wèn)題的處理
1.俯、仰角:2.方位角、象限角:3.坡度:
4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
把一個(gè)數(shù)寫(xiě)做的形式,其中,n是整數(shù),這種記數(shù)法叫做科學(xué)記數(shù)法。
(1)確定:是只有一位整數(shù)數(shù)位的數(shù).
(2)確定n:當(dāng)原數(shù)≥1時(shí),等于原數(shù)的整數(shù)位數(shù)減1;;當(dāng)原數(shù)<1時(shí),是負(fù)整數(shù),它的絕對(duì)值等于原數(shù)中左起第一個(gè)非零數(shù)字前零的個(gè)數(shù)(含整數(shù)位上的`零)。
例如:-40700=-4.07×105,0.000043=4.3×10ˉ5.
(3).近似值的精確度:一般地,一個(gè)近似數(shù),四舍五入到哪一位,就說(shuō)這個(gè)近似數(shù)精確到哪一位
(4)按精確度或有效數(shù)字取近似值,一定要與科學(xué)計(jì)數(shù)法有機(jī)結(jié)合起來(lái).
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對(duì)角線(xiàn)上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線(xiàn)兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線(xiàn)的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對(duì)邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對(duì)邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對(duì)邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對(duì)邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
中考數(shù)學(xué)知識(shí)點(diǎn)
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫(xiě)成的形式。自變量x的'取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線(xiàn),它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱(chēng)。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線(xiàn)的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x 的增大而減小。
、賦的取值范圍是x0,
y的取值范圍是y0;
、诋(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過(guò)點(diǎn)P作軸、軸的垂線(xiàn),垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無(wú)論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
1、隨機(jī)事件
必然事件:在一定條件下,一定會(huì)發(fā)生的事件稱(chēng)為必然事件。
不可能事件:在一定條件下,一定不會(huì)發(fā)生的事件稱(chēng)為不可能事件。
必然事件和不可能事件統(tǒng)稱(chēng)確定性事件。
隨機(jī)事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱(chēng)為隨機(jī)事件。
2、概率
(1)概率的性質(zhì):P(必然事件)=1;P(不可能事件)=0;0
(2)一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包括其中的m種結(jié)果,那么事件A發(fā)生的概率。
1、能通過(guò)列表、畫(huà)樹(shù)狀圖等方法列出簡(jiǎn)單隨機(jī)事件所有可能的結(jié)果,以及指定事件發(fā)生的所有可能結(jié)果,了解事件的概率。
2、知道通過(guò)大量的重復(fù)試驗(yàn),可以用頻率來(lái)估計(jì)概率。
1、必然事件、不可能事件、隨機(jī)事件的辨析。
2、簡(jiǎn)單事件的概率求解。
3、用頻率估計(jì)概率。
4、用概率解決實(shí)際問(wèn)題。
5、概率與其它知識(shí)的綜合運(yùn)用。
1、下列事件中是必然事件的是( )
A、拉薩明日刮西北風(fēng) B、拋擲一枚硬幣,落地后正面朝上
C、當(dāng)x是實(shí)數(shù)時(shí),x2≥0 D、三角形內(nèi)角和是360°
2、下列說(shuō)法正確的是( )
A、拉薩市“明天降雨的概率是75%”表示明天有75%的時(shí)間會(huì)降雨
B、隨機(jī)拋擲一枚均勻的硬幣,落地后正面一定朝上
C、在一次抽獎(jiǎng)活動(dòng)中,“中獎(jiǎng)的概率是1%”表示抽獎(jiǎng)100次就一定會(huì)中獎(jiǎng)
D、在平面內(nèi),平行四邊形的兩條對(duì)角線(xiàn)一定相交
3、下列事件是不可能事件的是( )
A、一個(gè)角和它的余角的和是90°
B、接連擲10次骰子都是6點(diǎn)朝上
C、一個(gè)有理數(shù)和它的倒數(shù)之和等于0
D、一個(gè)有理數(shù)小于它的倒數(shù)
4、下列事件中是必然事件的'是( )
A、從一個(gè)裝有藍(lán)、白兩色球的缸里摸出一個(gè)球,摸出的球是白球
B、扎西的自行車(chē)輪胎被釘子扎壞
C、卓瑪期末考試數(shù)學(xué)成績(jī)一定得滿(mǎn)分
D、將菜籽油滴入水中,菜籽油會(huì)浮在水面上
5、下列說(shuō)法中,正確的是( )
A、生活中,如果一個(gè)事件不是不可能事件,那么它就必然發(fā)生
B、生活中,如果一個(gè)事件可能發(fā)生,那么它就是必然事件
C、生活中,如果一個(gè)事件發(fā)生的可能性很大,那么它也可能不發(fā)生
D、生活中,如果一個(gè)事件不是必然事件,那么它就不可能發(fā)生
6、同時(shí)投擲兩枚質(zhì)地均勻的正方體骰子,骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù)。下列事件中是不可能事件的是( )
A、點(diǎn)數(shù)之和為12 B、點(diǎn)數(shù)之和小于3
C、點(diǎn)數(shù)之和大于4且小于8 D、點(diǎn)數(shù)之和為13
7、某個(gè)事件發(fā)生的概率是,這意味著( )
A、在兩次重復(fù)實(shí)驗(yàn)中該事件必有一次發(fā)生 B、在一次實(shí)驗(yàn)中沒(méi)有發(fā)生,下次肯定發(fā)生
C、在一次實(shí)驗(yàn)中已經(jīng)發(fā)生,下次肯定不發(fā)生 D、每次實(shí)驗(yàn)中事件發(fā)生的可能性是50%
8、在生產(chǎn)的100件產(chǎn)品中,有95件正品,5件次品。從中任抽一件是次品的概率為( )
A、0.05 B、0.5 C、0.95 D、95
9、有50個(gè)型號(hào)相同的乒乓球,其中一等品40個(gè),二等品8個(gè),三等品2個(gè),現(xiàn)從中任取一個(gè)乒乓球,抽到一等品的概率是( )
A、 B、 C、 D、
10、卓瑪?shù)奈木吆兄杏袃芍灩P:一支紅色的、一支綠色的;三支水彩筆:分別是黃色、紅色、黑色,任意拿出一支蠟筆和一支水彩筆,正好都是紅色的概率是( )
A、 B、 C、 D、
11、某燈泡廠(chǎng)的一次質(zhì)量檢查中,從20xx個(gè)燈泡中抽查了100個(gè),其中有6個(gè)不合格,那么在這20xx個(gè)燈泡中,估計(jì)有 個(gè)燈泡不合格。
12、隨意安排甲、乙、丙3人在3天節(jié)日中值班,每人值班1天。
(1)這3人的值班順序共有多少種不同的排列方法?
(2)其中甲排在乙之前的排法有多少種?
(3)甲排在乙之前的概率是多少?
學(xué)數(shù)學(xué)的竅門(mén)有哪些
學(xué)數(shù)學(xué)最重要的就是解題能力。要想會(huì)做數(shù)學(xué)題目,就要有大量的練習(xí)積累,知道各類(lèi)型題目的解題步驟與方法,題目做多了就有手感了,再拿出類(lèi)似的題目才會(huì)有解題思路。
其次是學(xué)會(huì)預(yù)習(xí)。解題思路不是直接就有的,也并非通過(guò)做幾道簡(jiǎn)單的題目就能輕易獲得,而是在預(yù)習(xí)過(guò)程中不斷積累出來(lái)的。因此,預(yù)習(xí)在數(shù)學(xué)學(xué)習(xí)過(guò)程中起到了非常重要的作用。預(yù)習(xí)一方面能夠讓大家提前對(duì)數(shù)學(xué)知識(shí)有所了解,另一方面能夠培養(yǎng)數(shù)學(xué)獨(dú)立學(xué)習(xí)能力。
學(xué)數(shù)學(xué)必須多做題。理解了數(shù)學(xué)基本定義和知識(shí)點(diǎn)以后,就需要通過(guò)做對(duì)應(yīng)習(xí)題去鞏固知識(shí),多做多練才能更好地掌握所學(xué)知識(shí),學(xué)數(shù)學(xué)也是看花容易繡花難的,只有真正動(dòng)手去做題、經(jīng)歷了實(shí)操過(guò)程能學(xué)會(huì)。
學(xué)好數(shù)學(xué)有什么技巧
1、有良好的學(xué)習(xí)興趣
(1)課前預(yù)習(xí),對(duì)所學(xué)知識(shí)產(chǎn)生疑問(wèn),產(chǎn)生好奇心。
(2)聽(tīng)課中要配合老師講課,滿(mǎn)足感官的興奮性。聽(tīng)課中重點(diǎn)解決預(yù)習(xí)中疑問(wèn),把老師課堂的提問(wèn)、停頓、教具和模型的演示都視為欣賞音樂(lè),及時(shí)回答老師課堂提問(wèn),培養(yǎng)思考與老師同步性,提高精神,把老師對(duì)你的提問(wèn)的評(píng)價(jià),變?yōu)楸薏邔W(xué)習(xí)的動(dòng)力。
2、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣
習(xí)慣是經(jīng)過(guò)重復(fù)練習(xí)而鞏固下來(lái)的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識(shí)面和培養(yǎng)自己再學(xué)習(xí)能力。
【中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
中考數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)01-13
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-24
[實(shí)用]中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-24
中考數(shù)學(xué)知識(shí)點(diǎn)03-15
中考數(shù)學(xué)必考知識(shí)點(diǎn)03-12
中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)優(yōu)秀05-08
2018中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-31