中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)精華【15篇】
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,它可以使我們更有效率,因此我們需要回頭歸納,寫一份總結(jié)了。那么你真的懂得怎么寫總結(jié)嗎?下面是小編精心整理的中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
一、知識(shí)點(diǎn):
1、“三線八角”
①如何由線找角:一看線,二看型。同位角是“F”型;內(nèi)錯(cuò)角是“Z”型;同旁內(nèi)角是“U”型。
、谌绾斡山钦揖:組成角的三條線中的公共直線就是截線。
2、平行公理:
如果兩條直線都和第三條直線平行,那么這兩條直線也平行。簡(jiǎn)述:平行于同一條直線的兩條直線平行。補(bǔ)充定理:
如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。簡(jiǎn)述:垂直于同一條直線的兩條直線平行。
3、平行線的判定和性質(zhì):
判定定理?xiàng)l件同位角相等內(nèi)錯(cuò)角相等同旁內(nèi)角互補(bǔ)結(jié)論兩直線平行兩直線平行兩直線平行條件兩直線平行兩直線平行兩直線平行性質(zhì)定理結(jié)論同位角相等內(nèi)錯(cuò)角相等同旁內(nèi)角互補(bǔ)
4、圖形平移的性質(zhì):
圖形經(jīng)過平移,連接各組對(duì)應(yīng)點(diǎn)所得的線段互相平行(或在同一直線上)并且相等。
5、三角形三邊之間的關(guān)系:
三角形的任意兩邊之和大于第三邊;三角形的任意兩邊之差小于第三邊。
若三角形的三邊分別為a、b、c,則abcab
6、三角形中的主要線段:
三角形的高、角平分線、中線。
注意:
①三角形的高、角平分線、中線都是線段。
②高、角平分線、中線的應(yīng)用。
7、三角形的內(nèi)角和:
三角形的3個(gè)內(nèi)角的和等于180°;直角三角形的兩個(gè)銳角互余;
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角。
8、多邊形的內(nèi)角和:
n邊形的內(nèi)角和等于(n-2)180°;任意多邊形的外角和等于360°。
第八章冪的運(yùn)算
nn
冪(power)指乘方運(yùn)算的結(jié)果。a指將a自乘n次(n個(gè)a相乘)。把a(bǔ)看作乘方的結(jié)果,叫做a的n次冪。
對(duì)于任意底數(shù)a,b,當(dāng)m,n為正整數(shù)時(shí),有
。韓m+n
aa=a(同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加)mnm-n
a÷a=a(同底數(shù)冪相除,底數(shù)不變,指數(shù)相減)mnmn(a)=a(冪的乘方,底數(shù)不變,指數(shù)相乘)
nnn
(ab)=aa(積的乘方,把積的每一個(gè)因式乘方,再把所得的冪相乘)0
a=1(a≠0)(任何不等于0的數(shù)的0次冪等于1)-nn
a=1/a(a≠0)(任何不等于0的數(shù)的-n次冪等于這個(gè)數(shù)的n次冪的倒數(shù))
n
科學(xué)記數(shù)法:把一個(gè)絕對(duì)值大于10(或者小于1)的整數(shù)記為a10的形式(其中1≤|a|<10),這種記數(shù)法叫做科學(xué)記數(shù)法.
復(fù)習(xí)知識(shí)點(diǎn):
1.乘方的概念
求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。在a中,a叫做底數(shù),n叫做指數(shù)。
2.乘方的性質(zhì)
。1)負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪的正數(shù)。
2
n(2)正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
第九章整式的乘法與因式分解
一、整式乘除法
單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù),相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字
52525+27
母,則連同它的指數(shù)作為積的一個(gè)因式.acbc=(ab)(cc)=abc=abc注:運(yùn)算順序先乘方,后乘除,最后加減
單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式
單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加,m(a+b+c)=ma+mb+mc注:不重不漏,按照順序,注意常數(shù)項(xiàng)、負(fù)號(hào).本質(zhì)是乘法分配律。
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相乘(a+b)(m+n)=am+an+bm+bn
乘法公式:平方差公式:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.
22
(a+b)(a-b)=a-b
完全平方公式:兩數(shù)和[或差]的平方,等于它們的平方和,加[或減]它們積的2
222
倍.(a±b)=a±2ab+b
因式分解:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,也叫做把這個(gè)多項(xiàng)式分解因式.因式分解方法:
1、提公因式法.關(guān)鍵:找出公因式
公因式三部分:
①系數(shù)(數(shù)字)一各項(xiàng)系數(shù)最大公約數(shù);
②字母--各項(xiàng)含有的相同字母;
、壑笖(shù)--相同字母的最低次數(shù);
步驟:
第一步是找出公因式;
第二步是提取公因式并確定另一因式.
需注意,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來檢驗(yàn)是否漏項(xiàng).
注意:
、偬崛」蚴胶蟾饕蚴綉(yīng)該是最簡(jiǎn)形式,即分解到“底”;
、谌绻囗(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的.
22
2、公式法.
、賏-b=(a+b)(a-b)兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積a、
222
b可以是數(shù)也可是式子
、赼±2ab+b=(a±b)完全平方兩個(gè)數(shù)平方和加上或減去這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和[或差]的平方.3322
③x-y=(x-y)(x+xy+y)立方差公式
2
3、十字相乘(x+p)(x+q)=x+(p+q)x+pq因式分解三要素:
。1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式
。2)因式分解必須是恒等變形;
。3)因式分解必須分解到每個(gè)因式都不能分解為止.弄清因式分解與整式乘法的內(nèi)在的關(guān)系:互逆變形,因式分解是把和差化為積的`形式,而整式乘法是把積化為和差
添括號(hào)法則:如括號(hào)前面是正號(hào),括到括號(hào)里的各項(xiàng)都不變號(hào),如括號(hào)前是負(fù)號(hào)各項(xiàng)都得改符號(hào)。用去括號(hào)法則驗(yàn)證
第十章二元一次方程組
。、含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。
。、含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的方程組叫做二元一次方程組。
。、二元一次方程組中兩個(gè)方程的公共解叫做二元一次方程組的解。
。、代入消元法:把二元一次方程中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再帶入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解。這種方法叫做代入消元法,簡(jiǎn)稱代入法。
。、加減消元法:當(dāng)方程中兩個(gè)方程的某一未知數(shù)的系數(shù)相等或互為相反數(shù)時(shí),把這兩個(gè)方程的兩邊相加或相減來消去這個(gè)未知數(shù),從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡(jiǎn)稱加減法.
6、二元一次方程組解應(yīng)用題的一般步驟可概括為“審、找、列、解、答”五步,即:
。1)審:通過審題,把實(shí)際問題抽象成數(shù)學(xué)問題,分析已知數(shù)和未知數(shù),并用字母表示其中的兩個(gè)未知數(shù);
。2)找:找出能夠表示題意兩個(gè)相等關(guān)系;
。3)列:根據(jù)這兩個(gè)相等關(guān)系列出必需的代數(shù)式,從而列出方程組;
。4)解:解這個(gè)方程組,求出兩個(gè)未知數(shù)的值;
。5)答:在對(duì)求出的方程的解做出是否合理判斷的基礎(chǔ)上,寫出答案.
第十一章一元一次不等式
一元一次不等式
重點(diǎn):不等式的性質(zhì)和一元一次不等式的解法。
難點(diǎn):一元一次不等式的解法和一元一次不等式解決在現(xiàn)實(shí)情景下的實(shí)際問題。知識(shí)點(diǎn)一:不等式的概念
1.不等式:
用“<”(或“≤”),“>”(或“≥”)等不等號(hào)表示大小關(guān)系的式子,叫做不等式.用“≠”表示不等關(guān)系的式子也是不等式.
要點(diǎn)詮釋:
(1)不等號(hào)的類型:
①“≠”讀作“不等于”,它說明兩個(gè)量之間的關(guān)系是不等的,但不能明確兩個(gè)量誰大誰;
(2)要正確用不等式表示兩個(gè)量的不等關(guān)系,就要正確理解“非負(fù)數(shù)”、“非正數(shù)”、“不大于”、“不小于”等數(shù)學(xué)術(shù)語的含義。
2.不等式的解:
能使不等式成立的未知數(shù)的值,叫做不等式的解。要點(diǎn)詮釋:
由不等式的解的定義可以知道,當(dāng)對(duì)不等式中的未知數(shù)取一個(gè)數(shù),若該數(shù)使不等式成立,則這個(gè)數(shù)就是不等式的一個(gè)解,我們可以和方程的解進(jìn)行對(duì)比理解,一般地,要判斷一個(gè)數(shù)是否為不等式的解,可將此數(shù)代入不等式的左邊和右邊利用不等式的概念進(jìn)行判斷。
3.不等式的解集:
一般地,一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。求不等式的解集的過程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集與不等式的解的區(qū)別:解集是能使不等式成立的未知數(shù)的取值范圍,是所有解的集合,而不等式的解是使不等式成立的未知數(shù)的值.二者的關(guān)系是:解集包括解,所有的解組成了解集。要點(diǎn)詮釋:
不等式的解集必須符合兩個(gè)條件:
(1)解集中的每一個(gè)數(shù)值都能使不等式成立;
(2)能夠使不等式成立的所有的數(shù)值都在解集中。知識(shí)點(diǎn)
二:不等式的基本性質(zhì)
基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變。符號(hào)語言表示為:如果,那么
基本性質(zhì)2:不等式的兩邊都乘上(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。
符號(hào)語言表示為:如果,并且,那么(或)。
基本性質(zhì)3:不等式的兩邊都乘上(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
符號(hào)語言表示為:如果要點(diǎn)詮釋:,并且,那么(或)
(1)不等式的基本性質(zhì)1的學(xué)習(xí)與等式的性質(zhì)的學(xué)習(xí)類似,可對(duì)比等式的性質(zhì)掌握;
(2)要理解不等式的基本性質(zhì)1中的“同一個(gè)整式”的含義不僅包括相同的數(shù),還有相同的單項(xiàng)式或多項(xiàng)式;
(3)“不等號(hào)的方向不變”,指的是如果原來是“>”,那么變化后仍是“>”;如果原來是“≤”,那么變化后仍是“≤”;“不等號(hào)的方向改變”指的是如果原來是“>”,那么變化后將成為“<”;如果原來是“≤”,那么變化后將成為“≥”;
(4)運(yùn)用不等式的性質(zhì)對(duì)不等式進(jìn)行變形時(shí),要特別注意性質(zhì)3,在乘(除)同一個(gè)數(shù)時(shí),必須先弄清這個(gè)數(shù)是正數(shù)還是負(fù)數(shù),如果是負(fù)數(shù),要記住不等號(hào)的方向一定要改變。知識(shí)點(diǎn)三:一元一次不等式的概念
只含有一個(gè)未知數(shù),且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不為0.這樣的不等式,叫做一元一次不等式。要點(diǎn)詮釋:
(1)一元一次不等式的概念可以從以下幾方面理解:
、僮笥覂蛇叾际钦(單項(xiàng)式或多項(xiàng)式);
、谥缓幸粋(gè)未知數(shù);
、畚粗獢(shù)的最高次數(shù)為1。
(2)一元一次不等式和一元一次方程可以對(duì)比理解。
相同點(diǎn):二者都是只含有一個(gè)未知數(shù),未知數(shù)的最高次數(shù)都是1,左右兩邊都是整式;不同點(diǎn):一元一次不等式表示不等關(guān)系(用“>”、“<”、“≥”、“≤”連接),一元一次方程表示相等關(guān)系(用“=”連接)。知識(shí)點(diǎn)
四:一元一次不等式的解法
1.解不等式:
求不等式解的過程叫做解不等式。
2.一元一次不等式的解法:
與一元一次方程的解法類似,其根據(jù)是不等式的基本性質(zhì),解一元一次不等式的一般步驟為:
(1)去分母;
(2)去括號(hào);
(3)移項(xiàng);
(4)合并同類項(xiàng);
(5)系數(shù)化為
1.要點(diǎn)詮釋:
。1)在解一元一次不等式時(shí),每個(gè)步驟并不一定都要用到,可根據(jù)具體問題靈活運(yùn)用
。2)解不等式應(yīng)注意:
、偃シ帜笗r(shí),每一項(xiàng)都要乘同一個(gè)數(shù),尤其不要漏乘常數(shù)項(xiàng);
、谝祈(xiàng)時(shí)不要忘記變號(hào);
、廴ダㄌ(hào)時(shí),若括號(hào)前面是負(fù)號(hào),括號(hào)里的每一項(xiàng)都要變號(hào);
、茉诓坏仁絻蛇叾汲(或除以)同一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向要改變。
3.不等式的解集在數(shù)軸上表示:
在數(shù)軸上可以直觀地把不等式的解集表示出來,能形象地說明不等式有無限多個(gè)解,它對(duì)以后正確確定一元一次不等式組的解集有很大幫助。要點(diǎn)詮釋:
在用數(shù)軸表示不等式的解集時(shí),要確定邊界和方向:
。1)邊界:有等號(hào)的是實(shí)心圓圈,無等號(hào)的是空心圓圈;
。2)方向:大向右,小向左規(guī)律方法指導(dǎo)(包括對(duì)本部分主要題型、思想、方法的總結(jié))
1、不等式的基本性質(zhì)是解不等式的主要依據(jù)。(性質(zhì)2、3要倍加小心)
2、檢驗(yàn)一個(gè)數(shù)值是不是已知不等式的解,只要把這個(gè)數(shù)代入不等式,然后判斷不等式是否成立,若成立,就是不等式的解;若不成立,則就不是不等式的解。
3、解一元一次不等式是一個(gè)有目的、有根據(jù)、有步驟的不等式變形,最終目的是將原不等式變?yōu)?/p>
或
的形式,其一般步驟是:
(1)去分母;
(2)去括號(hào);
。3)移項(xiàng);
。4)合并同類項(xiàng);
。5)化未知數(shù)的系數(shù)為1。
這五個(gè)步驟根據(jù)具體題目,適當(dāng)選用,合理安排順序。但要注意,去分母或化未知數(shù)的系數(shù)為1時(shí),在不等式兩邊同乘以(或除以)同一個(gè)非零數(shù)時(shí),如果是個(gè)正數(shù),不等號(hào)方向不變,如果是個(gè)負(fù)數(shù),不等號(hào)方向改變。
解一元一次不等式的一般步驟及注意事項(xiàng)變形名稱具體做法注意事項(xiàng)去分母
。1)不含分母的項(xiàng)不能漏乘
。2)注意分?jǐn)?shù)線有括號(hào)作用,去掉分在不等式兩邊同乘以分母的最小公倍數(shù)母后,如分子是多項(xiàng)式,要加括號(hào)
。3)不等式兩邊同乘以的數(shù)是個(gè)負(fù)數(shù),不等號(hào)方向改變。
(1)運(yùn)用分配律去括號(hào)時(shí),不要漏乘根據(jù)題意,由內(nèi)而外或由外而內(nèi)去括號(hào)均括號(hào)內(nèi)的項(xiàng)可
。2)如果括號(hào)前是“”號(hào),去括號(hào)時(shí),括號(hào)內(nèi)的各項(xiàng)要變號(hào)把含未知數(shù)的項(xiàng)都移到不等式的一邊(通7去括號(hào)移項(xiàng)移項(xiàng)(過橋)變號(hào)常是左邊),不含未知數(shù)的項(xiàng)移到不等式的另一邊把不等式兩邊的同類項(xiàng)分別合并,把不等合并同類項(xiàng)式化為或的形式合并同類項(xiàng)只是將同類項(xiàng)的系數(shù)相加,字母及字母的指數(shù)不變。
在不等式兩邊同除以未知數(shù)的系數(shù),若且,則不等式的解集為;若系數(shù)化1且,則不等式的
。1)分子、分母不能顛倒
。2)不等號(hào)改不改變由系數(shù)的正負(fù)性決定。
則不
。3)計(jì)算順序:先算數(shù)值后定符號(hào)且,解集為;若且等式的解集為;若則不等式的解集為;
4、將一元一次不等式的解集在數(shù)軸上表示出來,是數(shù)學(xué)中數(shù)形結(jié)合思想的重要體現(xiàn),要注意的是“三定”:一是定邊界點(diǎn),二是定方向,三是定空實(shí)。
5、用一元一次不等式解答實(shí)際問題,關(guān)鍵在于尋找問題中的不等關(guān)系,從而列出不等式并求出不等式的解集,最后解決實(shí)際問題。
6、常見不等式的基本語言的意義:
(1)(3)(5)(7),則x是正數(shù);
。2),則x是非正數(shù);
。4),則x大于y;
。6),則x不小于y;
。8),則x是負(fù)數(shù);,則x是非負(fù)數(shù);,則x小于y;,則x不大于y;
。9)或,則x,y同號(hào);
。10)或,則x,y異號(hào);
(11)x,y都是正數(shù),若,則;若,則;
。12)x,y都是負(fù)數(shù),若,則;若,則
第十二章證明
教學(xué)目標(biāo):
1.掌握定義、命題、定理、逆命題、互逆命題等概念,知道一個(gè)命題是真命題,它的逆命題不一定是真命題。
2.基本事實(shí)是其真實(shí)性不加證明的真命題,弄清真命題與定理的區(qū)別。
3.會(huì)用舉反例說明一個(gè)命題是假命題;掌握三角形內(nèi)角和定理的證明。重點(diǎn):定義、命題、定理、逆命題、互逆命題等概念的理解與運(yùn)用
難點(diǎn):會(huì)用舉反例說明一個(gè)命題是假命題;掌握三角形內(nèi)角和定理的證明。內(nèi)容:
1.以基本事實(shí):“同位角相等,兩直線平行”證明:
(1)“內(nèi)錯(cuò)角相等,兩直線平行”、“同旁內(nèi)角互補(bǔ),兩直線平行”、“平行于同一條直線的兩條直線平行”
2.基本事實(shí):“過直線外一點(diǎn),有且只有一條直線與這條直線平行”“兩直線平行,同位角相等”證明:
。1)兩只相平行,內(nèi)錯(cuò)角相等
。2)兩只相平行,同旁內(nèi)角互補(bǔ)
。3)三角形內(nèi)角和定理”
。4)直角三角形的兩個(gè)銳角互余
。5)有兩個(gè)銳角互余的三角形是直角三角形
(6)三角形的外角等于與它不相鄰的兩個(gè)外角的和
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
數(shù)學(xué)是研究數(shù)量結(jié)構(gòu)、變化、以及空間模型等概念的科學(xué)。它是物理、化學(xué)等學(xué)科的基礎(chǔ),而且與我們的生活息息相關(guān)。所以說,學(xué)好數(shù)學(xué)對(duì)于我們每個(gè)同學(xué)來說都是非常重要的。下面我向大家介紹一下初中數(shù)學(xué)的學(xué)習(xí)方法與技巧:
一、平時(shí)的數(shù)學(xué)學(xué)習(xí):
1、課前認(rèn)真預(yù)習(xí)。預(yù)習(xí)的目的是為了能更好得聽老師講課,通過預(yù)習(xí),掌握度要達(dá)到百分之八十。帶著預(yù)習(xí)中不明白的問題去聽老師講課,來解答這類的問題。預(yù)習(xí)還可以使聽課的整體效率提高。具體的預(yù)習(xí)方法:將書上的題目做完,畫出知識(shí)點(diǎn),整個(gè)過程大約持續(xù)15-20分鐘。在時(shí)間允許的情況下,還可以將練習(xí)冊(cè)做完。
2、讓數(shù)學(xué)課學(xué)與練結(jié)合。在數(shù)學(xué)課上,光聽是沒用的。當(dāng)老師讓同學(xué)去黑板上演算時(shí),自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解。否則考試遇到類似的題目就可能不會(huì)做。聽老師講課時(shí)一定要全神貫注,要注意細(xì)節(jié)問題,否則“千里之堤,毀于蟻穴”。
3、課后及時(shí)復(fù)習(xí)。寫完作業(yè)后對(duì)當(dāng)天老師講的內(nèi)容進(jìn)行梳理,可以適當(dāng)?shù)刈觯玻捣昼娮笥业恼n外題?梢愿鶕(jù)自己的需要選擇適合自己的課外書。其課外題內(nèi)容大概就是今天上的課。
4、單元測(cè)驗(yàn)是為了檢測(cè)近期的學(xué)習(xí)情況。其實(shí)分?jǐn)?shù)代表的是你的過去,關(guān)鍵的`是對(duì)于每次考試的總結(jié)和吸取教訓(xùn),是為了讓你在期中、期末考得更好。老師經(jīng)常會(huì)在沒通知的情況下進(jìn)行考試,所以要及時(shí)做到“課后復(fù)習(xí)”。
二、期中期末數(shù)學(xué)復(fù)習(xí):
要將平時(shí)的單元檢測(cè)卷訂成冊(cè),并且將錯(cuò)題再做一遍。如果整張?jiān)嚲砜嫉枚疾缓,那么可以?fù)印將試卷重做一遍。除試卷外,還可以將作業(yè)上的錯(cuò)題、難題、易錯(cuò)題重做一遍。另外,自己還可以做2——3張期末模擬卷。
三、數(shù)學(xué)考試技巧:
如果想得高分,在選擇、填空、計(jì)算題上是不能丟分的。在考數(shù)學(xué)的時(shí)候思想不能開小差,而且遇到難題時(shí)不能想“沒考好怎么辦啊”等內(nèi)容。在通常情況下,期末考試的難題都是不知道怎么做,但有可能突然明白的那種。遇到這種題目要沉著冷靜,利用題目給你的一切條件進(jìn)行分析,如這次考試有兩個(gè)空白的鐘,還有去年七年級(jí)期末的幾題填空。這些條件都對(duì)你的解題有很大幫助。在期中、期末考試中有充足的時(shí)間,將自己的速度壓下來,不是越快越好,爭(zhēng)取一次做成功。大概留35分鐘的時(shí)間檢查。
最終提醒大家:多做題有一定作用,但上課聽講、認(rèn)真答題及提高準(zhǔn)確率、總結(jié)經(jīng)驗(yàn)才是最重要的。還要將所學(xué)的知識(shí)用到生活中去,做到學(xué)以致用。當(dāng)你運(yùn)用數(shù)學(xué)知識(shí)解決了生活中實(shí)際問題的時(shí)候,你就會(huì)感受到學(xué)習(xí)數(shù)學(xué)的快樂。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
一、重要概念
1、數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標(biāo)準(zhǔn)
2、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
3、倒數(shù):①定義及表示法
、谛再|(zhì):≠1/a(a≠±1);中,a≠0;a1時(shí),1/a1;D。積為1。
4、相反數(shù):①定義及表示法
②性質(zhì):≠0時(shí),a≠—a;與—a在數(shù)軸上的位置;C。和為0,商為—1。
5、數(shù)軸:①定義(“三要素”)
②作用:A。直觀地比較實(shí)數(shù)的'大;B。明確體現(xiàn)絕對(duì)值意義;C。建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6、奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n—1
偶數(shù):2n(n為自然數(shù))
7、絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
、讴│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
1.如果把解題比做打仗,那么解題者的“兵器”就是數(shù)學(xué)基礎(chǔ)知識(shí),“兵力”就是數(shù)學(xué)基本方法,而調(diào)動(dòng)數(shù)學(xué)基礎(chǔ)知識(shí)、運(yùn)用數(shù)學(xué)思想方法的數(shù)學(xué)解題思想則正是“兵法”。
2.數(shù)學(xué)家存在的主要理由就是解決問題。因此,數(shù)學(xué)的真正的組成部分是問題和解答!皢栴}是數(shù)學(xué)的心臟”。
3.問題反映了現(xiàn)有水平與客觀需要的矛盾,對(duì)學(xué)生來說,就是已知和未知的矛盾。問題就是矛盾。對(duì)于學(xué)生而言,問題有三個(gè)特征:
。1)接受性:學(xué)生愿意解決并且具有解決它的知識(shí)基礎(chǔ)和能力基礎(chǔ)。
。2)障礙性:學(xué)生不能直接看出它的解法和答案,而必須經(jīng)過思考才能解決。
。3)探究性:學(xué)生不能按照現(xiàn)成的的套路去解,需要進(jìn)行探索,尋找新的處理方法。
4.練習(xí)型的問題具有教學(xué)性,它的結(jié)論為數(shù)學(xué)家或教師所已知,其之成為問題僅相對(duì)于教學(xué)或?qū)W生而言,包括一個(gè)待計(jì)算的答案、一個(gè)待證明的結(jié)論、一個(gè)待作出的圖形、一個(gè)待判斷的命題、一個(gè)待解決的實(shí)際問題。
5.“問題解決”有不同的解釋,比較典型的觀點(diǎn)可歸納為4種:
(1)問題解決是心理活動(dòng)。面臨新情境、新課題,發(fā)現(xiàn)它與主客觀需要的矛盾而自己卻沒有現(xiàn)成對(duì)策時(shí),所引起的尋求處理辦法的一種活動(dòng)。
。2)問題解決是一個(gè)探究過程。把“問題解決”定義為“將先前已獲得的知識(shí)用于新的、不熟悉的情境的過程”。這就是說,問題解決是一個(gè)發(fā)現(xiàn)的過程、探索的過程、創(chuàng)新的過程。
。3)問題解決是一個(gè)學(xué)習(xí)目的。“學(xué)習(xí)數(shù)學(xué)的主要目的在于問題解決”。因而,學(xué)習(xí)怎樣解決問題就成為學(xué)習(xí)數(shù)學(xué)的根本原因。此時(shí),問題解決就獨(dú)立于特殊的問題,獨(dú)立于一般過程或方法,也獨(dú)立于數(shù)學(xué)的具體內(nèi)容。
。4)問題解決是一種生存能力。重視問題解決能力的培養(yǎng)、發(fā)展問題解決的能力,其目的之一是,在這個(gè)充滿疑問、有時(shí)連問題和答案都是不確定的世界里,學(xué)習(xí)生存的本領(lǐng)。
6.解題研究存在一些誤區(qū),首先一個(gè)表現(xiàn)是,用現(xiàn)成的例子說明現(xiàn)成的觀點(diǎn),或用現(xiàn)成的觀點(diǎn)解釋現(xiàn)成的例子。其次一個(gè)表現(xiàn)是,長(zhǎng)期徘徊在一招一式的歸類上,缺少觀點(diǎn)上的提高或?qū)嵸|(zhì)性的'突破。第三個(gè)表現(xiàn)是,多研究“怎樣解”,較少問“為什么這樣解”。在這些誤區(qū)里,“解題而不立法、作答而不立論”。
7.人的思維依賴于必要的知識(shí)和經(jīng)驗(yàn),數(shù)學(xué)知識(shí)正是數(shù)學(xué)解題思維活動(dòng)的出發(fā)點(diǎn)與憑借。豐富的知識(shí)并加以優(yōu)化的結(jié)構(gòu)能為題意的本質(zhì)理解與思路的迅速尋找創(chuàng)造成功的條件。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識(shí)倉(cāng)庫(kù)是一個(gè)解題者的重要資本”。
8.熟練掌握數(shù)學(xué)基礎(chǔ)知識(shí)的體系。對(duì)于中學(xué)數(shù)學(xué)解題來說,應(yīng)如數(shù)學(xué)家珍說出教材的概念系統(tǒng)、定理系統(tǒng)、符號(hào)系統(tǒng)。還應(yīng)掌握中學(xué)數(shù)學(xué)競(jìng)賽涉及的基礎(chǔ)理論。深刻理解數(shù)學(xué)概念、準(zhǔn)確掌握數(shù)學(xué)定理、公式和法則。熟悉基本規(guī)則和常用的方法,不斷積累數(shù)學(xué)技巧。
9.數(shù)學(xué)的本質(zhì)活動(dòng)是思維。思維的對(duì)象是概念,思維的方式是邏輯。當(dāng)這種思維與新事物接觸時(shí),將出現(xiàn)“相容”和“不容”的兩種可能。出現(xiàn)“相容”時(shí),產(chǎn)生新結(jié)果,且被原概念吸收,并發(fā)展成新概念;當(dāng)出現(xiàn)“不容”時(shí),則產(chǎn)生了所謂的問題。這時(shí),思維出現(xiàn)迂回,甚至?xí)簳r(shí)退回原地,將原概念擴(kuò)大或?qū)⒃壿嬜兪,直到新思維與事物相容為止。至此,也產(chǎn)生新的結(jié)果,也被原思維吸收。這就是一個(gè)思維活動(dòng)的全過程。
10.解題能力,表現(xiàn)于發(fā)現(xiàn)問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數(shù)學(xué)能力(運(yùn)算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:
。1)掌握解題的科學(xué)程序;
。2)掌握數(shù)學(xué)中各種常用的思維方法,如觀察、試驗(yàn)、歸納、演繹、類比、分析、綜合、抽象、概括等;
。3)掌握解題的基本策略,能“因題制宜”地選擇對(duì)口的解題思路,使用有效的解題方法、調(diào)動(dòng)精明的解題技巧;
。4)具有敏銳的直覺。應(yīng)該明白,我們的數(shù)學(xué)解題活動(dòng)是在縱橫交錯(cuò)的數(shù)學(xué)關(guān)系中進(jìn)行的,在這個(gè)過程中,我們從一種可能性過渡到另一種可能性時(shí),并非對(duì)每一個(gè)數(shù)學(xué)細(xì)節(jié)都洞察無遺,并非總能借助于“三段論”的橋梁,而是在短時(shí)間內(nèi)朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達(dá)到對(duì)某種數(shù)學(xué)對(duì)象的本質(zhì)領(lǐng)悟:
11.解題具有實(shí)踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實(shí)踐來學(xué)到它……你想學(xué)會(huì)游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會(huì),而只能靠自己學(xué)會(huì)”。
12.所謂解題經(jīng)驗(yàn),就是某些數(shù)學(xué)知識(shí)、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經(jīng)驗(yàn)所獲得的有序組合,就好像建筑上的預(yù)制構(gòu)件(或稱為思維組塊),遇到合適的場(chǎng)合,可以原封不動(dòng)地把它搬上去。
13.認(rèn)為解題純粹是一種智能活動(dòng)顯然是錯(cuò)誤的;決心與情緒所起的作用非常重要。教育學(xué)生解題是一種意志教育。當(dāng)學(xué)生求解那些對(duì)他來說并不太容易的題目時(shí),他學(xué)會(huì)了敗而不餒,學(xué)會(huì)了贊賞微小的進(jìn)展,學(xué)會(huì)了等待主要念頭的萌動(dòng),學(xué)會(huì)了當(dāng)主要念頭出現(xiàn)后如何全力以赴,直撲問題的核心或主干;當(dāng)一旦突破關(guān)卡,如何去占領(lǐng)問題的至高點(diǎn),并冷靜地府視全局,從而得到問題的完善解決。如果學(xué)生在解題過程中沒有機(jī)會(huì)嘗盡為求解而奮斗的喜怒哀樂,那么他的數(shù)學(xué)解題訓(xùn)練就在最重要的地方失敗了。
14.教師的例題教學(xué)要暴露自己思維的真實(shí)過程,老師備課時(shí),遇上的曲折和錯(cuò)誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺(tái)裝神弄巧,得心應(yīng)手,左右逢源,把自己打扮成超人,將給學(xué)生的學(xué)習(xí)產(chǎn)生誤導(dǎo)。這樣的教師越高明,學(xué)生越自卑。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的'取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)解析法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。
(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。
。3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
(1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類: ① 整數(shù) ②分?jǐn)?shù)
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù) 0和正整數(shù);a0 a是正數(shù);a0 a是負(fù)數(shù);
a≥0 a是正數(shù)或0 a是非負(fù)數(shù);a≤ 0 ? a是負(fù)數(shù)或0 a是非正數(shù).
有理數(shù)比大。
(1)正數(shù)的`絕對(duì)值越大,這個(gè)數(shù)越大;
(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;
(3)正數(shù)大于一切負(fù)數(shù);
(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;
(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù) 0,小數(shù)-大數(shù) 0.
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
第一章二次根式
1二次根式:形如()的式子為二次根式;
性質(zhì):()是一個(gè)非負(fù)數(shù);
2二次根式的乘除:;
3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。
4海倫—秦九韶公式:,S是三角形的面積,p為。
第二章一元二次方程
1一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
公式法:
因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。
3一元二次方程在實(shí)際問題中的應(yīng)用
4韋達(dá)定理:設(shè)是方程的兩個(gè)根,那么有
第三章旋轉(zhuǎn)
1圖形的旋轉(zhuǎn)
旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換
性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角
旋轉(zhuǎn)前后的圖形全等。
2中心對(duì)稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱;
中心對(duì)稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對(duì)稱圖形;
3關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)
第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直于弦的直徑
圓是軸對(duì)稱圖形,任何一條直徑所在的直線都是它的對(duì)稱軸;
垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條;
平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;
半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。
5點(diǎn)和圓的位置關(guān)系
點(diǎn)在圓外
點(diǎn)在圓上d=r
點(diǎn)在圓內(nèi)d
定理:不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓。
三角形的外接圓:經(jīng)過三角形的三個(gè)頂點(diǎn)的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點(diǎn),叫做三角形的外心。
6直線和圓的位置關(guān)系
相交d
相切d=r
相離d>r
切線的性質(zhì)定理:圓的切線垂直于過切點(diǎn)的半徑;
切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線;
切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。
7圓和圓的位置關(guān)系
外離d>R+r
外切d=R+r
相交R—r
內(nèi)切d=R—r
內(nèi)含d
8正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對(duì)的圓心角
正多邊形的邊心距:中心到一邊的距離
9弧長(zhǎng)和扇形面積
扇形面積:
10圓錐的側(cè)面積和全面積
側(cè)面積:
全面積
11(附加)相交弦定理、切割線定理
第五章概率初步
1概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=
3用頻率去估計(jì)概率
第六章二次函數(shù)
1二次函數(shù)=
a>0,開口向上;a<0,開口向下;
對(duì)稱軸:;
頂點(diǎn)坐標(biāo):;
圖像的平移可以參照頂點(diǎn)的平移。
2用函數(shù)觀點(diǎn)看一元二次方程
3二次函數(shù)與實(shí)際問題
第七章相似
1圖形的相似
相似多邊形的對(duì)應(yīng)邊的`比值相等,對(duì)應(yīng)角相等;
兩個(gè)多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;
相似比:相似多邊形對(duì)應(yīng)邊的比值。
2相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。
3相似三角形的周長(zhǎng)和面積
相似三角形(多邊形)的周長(zhǎng)的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似
位似圖形:兩個(gè)多邊形相似,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。
第八章銳角三角函數(shù)
1銳角三角函數(shù):正弦、余弦、正切;
2解直角三角形
第九章投影和視圖
1投影:平行投影、中心投影、正投影
2三視圖:俯視圖、主視圖、左視圖。
3三視圖的畫法
初三數(shù)學(xué)知識(shí)點(diǎn)都知道,但題就做不出來?
壓軸題一定要做到每天一個(gè),一開始可能會(huì)覺得很難,一個(gè)提一個(gè)小時(shí)也做不完,慢慢會(huì)好的。
去書店買一些全國(guó)各省市的中考卷來做。有一些簡(jiǎn)單的題就可以直接過掉。注意要做選擇題和填空題的倒數(shù)兩個(gè)題,大題第一題,倒數(shù)第一、二題,對(duì)于書中的知識(shí)點(diǎn)不要死背,要注意每個(gè)定理的推導(dǎo)過程,推導(dǎo)思路。
其實(shí)所謂的難題壓軸題,就是在一個(gè)題中反映了多個(gè)知識(shí)點(diǎn),在做自己買的套卷的壓軸題時(shí)對(duì)于一個(gè)問如果想了15分鐘還沒有答案就可以大略地看一下答案,想通后就就進(jìn)下一題,明天再自己做這題。這樣會(huì)提高很快,做的題多了你對(duì)題目的熟練程度就提高了,做題的速度也會(huì)提高正確率也會(huì)提高,對(duì)于自己拿手的題就不必多費(fèi)時(shí)間去做了,那是在浪費(fèi)自己的時(shí)間,要把時(shí)間用在刀刃上,做自己錯(cuò)的多的題!
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
不等式與不等式組
1.定義:
用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
2.性質(zhì):
、俨坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號(hào)方向不變。
、诓坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號(hào)方向不變。
、鄄坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號(hào)方向相反。
3.分類:
、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦剑缓幸粋(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
、谝辉淮尾坏仁浇M:
a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個(gè)不等式的解集的'公共部分,叫做這個(gè)一元一次不等式組的解集。
4.考點(diǎn):
、俳庖辉淮尾坏仁(組)
②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)單實(shí)際問題
、塾脭(shù)軸表示一元一次不等式(組)的解集
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算。或雖含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式;數(shù)字或字母的乘積叫單項(xiàng)式(單獨(dú)的一個(gè)數(shù)字或字母也是單項(xiàng)式)。
2.系數(shù):單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù)。任何一個(gè)非零數(shù)的零次方等于1.
3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式。
4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。
5.常數(shù)項(xiàng):不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
6.多項(xiàng)式的排列
(1)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從大到小的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母降冪排列。
(2)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母升冪排列。
7.多項(xiàng)式的排列時(shí)注意:
(1)由于單項(xiàng)式的項(xiàng),包括它前面的性質(zhì)符號(hào),因此在排列時(shí),仍需把每一項(xiàng)的性質(zhì)符號(hào)看作是這一項(xiàng)的一部分,一起移動(dòng)。
(2)有兩個(gè)或兩個(gè)以上字母的多項(xiàng)式,排列時(shí),要注意:
a.先確認(rèn)按照哪個(gè)字母的指數(shù)來排列。
b.確定按這個(gè)字母向里排列,還是向外排列。
(3)整式:
單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
8.多項(xiàng)式的`加法:
多項(xiàng)式的加法,是指多項(xiàng)式的同類項(xiàng)的系數(shù)相加(即合并同類項(xiàng))。
9.同類項(xiàng):所含字母相同,并且相同字母的次數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。
10.合并同類項(xiàng):多項(xiàng)式中的同類項(xiàng)可以合并,叫做合并同類項(xiàng),合并同類項(xiàng)的法則是:同類項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。
11.掌握同類項(xiàng)的概念時(shí)注意:
(1)判斷幾個(gè)單項(xiàng)式或項(xiàng),是否是同類項(xiàng),就要掌握兩個(gè)條件:
①所含字母相同。
②相同字母的次數(shù)也相同。
(2)同類項(xiàng)與系數(shù)無關(guān),與字母排列的順序也無關(guān)。
(3)所有常數(shù)項(xiàng)都是同類項(xiàng)。
12.合并同類項(xiàng)步驟:
(1)準(zhǔn)確的找出同類項(xiàng);
(2)逆用分配律,把同類項(xiàng)的系數(shù)加在一起(用小括號(hào)),字母和字母的指數(shù)不變;
(3)寫出合并后的結(jié)果。
13.在掌握合并同類項(xiàng)時(shí)注意:
(1)如果兩個(gè)同類項(xiàng)的系數(shù)互為相反數(shù),合并同類項(xiàng)后,結(jié)果為0;
(2)不要漏掉不能合并的項(xiàng);
(3)只要不再有同類項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。
14.整式的拓展
整式的乘除:重點(diǎn)是整式的乘除,尤其是其中的乘法公式。乘法公式的結(jié)構(gòu)特征以及公式中的字母的廣泛含義,學(xué)生不易掌握.因此,乘法公式的靈活運(yùn)用是難點(diǎn),添括號(hào)(或去括號(hào))時(shí),括號(hào)中符號(hào)的處理是另一個(gè)難點(diǎn)。添括號(hào)(或去括號(hào))是對(duì)多項(xiàng)式的變形,要根據(jù)添括號(hào)(或去括號(hào))的法則進(jìn)行。在整式的乘除中,單項(xiàng)式的乘除是關(guān)鍵,這是因?yàn),一般多?xiàng)式的乘除都要“轉(zhuǎn)化”為單項(xiàng)式的乘除。
整式四則運(yùn)算的主要題型有:
(1)單項(xiàng)式的四則運(yùn)算
此類題目多以選擇題和應(yīng)用題的形式出現(xiàn),其特點(diǎn)是考查單項(xiàng)式的四則運(yùn)算。
(2)單項(xiàng)式與多項(xiàng)式的運(yùn)算
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
一、初中數(shù)學(xué)基本知識(shí)
、濉(shù)與代數(shù)
A、數(shù)與式:
1、有理數(shù)
有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:
加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:AMAN=A(MN)
(AM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的`積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:
、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:
、偻帜傅姆质较嗉訙p,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
20xx年中考數(shù)學(xué)基礎(chǔ)知識(shí)總結(jié)20xx年中考數(shù)學(xué)基礎(chǔ)知識(shí)總結(jié)
B、方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)?shù)?的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c
4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diata”,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)
2、不等式與不等式組
不等式:
、儆梅(hào)〉,=,〈號(hào)連接的式子叫不等式。
、诓坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號(hào)的方向不變。
、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號(hào)方向不變。
、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號(hào)方向相反。
不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
、訇P(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
、谝辉淮尾坏仁浇M中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
、矍蟛坏仁浇M解集的過程,叫做解不等式組。
一元一次不等式的符號(hào)方向:
在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。
在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:A>B,AC>BC
在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A*C
如果不等式乘以0,那么不等號(hào)改為等號(hào)
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
二、函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):①若兩個(gè)變量X,間的關(guān)系式可以表示成=XB(B為常數(shù),不等于0)的形式,則稱是X的一次函數(shù)。②當(dāng)B=0時(shí),稱是X的正比例函數(shù)。
一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)=X的圖象是經(jīng)過原點(diǎn)的一條直線。③在一次函數(shù)中,當(dāng)〈0,B〈O,則經(jīng)234象限;當(dāng)〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)〉0,B〉0時(shí),則經(jīng)123象限。④當(dāng)〉0時(shí),的值隨X值的增大而增大,當(dāng)X〈0時(shí),的值隨X值的增大而減少。
三、空間與圖形
A、圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
20xx年中考數(shù)學(xué)基礎(chǔ)知識(shí)總結(jié)建造師考試_建筑工程類工程師考試網(wǎng)
弧、扇形:①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。③將線段的兩端無限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。④經(jīng)過兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
一、 重要概念
1。數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標(biāo)準(zhǔn)
2。非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
3。倒數(shù): ①定義及表示法
、谛再|(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時(shí),1/a1;D。積為1。
4。相反數(shù): ①定義及表示法
②性質(zhì):A.a≠0時(shí),a≠-a;B.a與-a在數(shù)軸上的位置;C。和為0,商為-1。
5。數(shù)軸:①定義(“三要素”)
②作用:A。直觀地比較實(shí)數(shù)的大小;B。明確體現(xiàn)絕對(duì)值意義;C。建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6。奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7。絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的'點(diǎn)到原點(diǎn)的距離。
、讴│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
1、數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是復(fù)習(xí)的重中之重;貧w課本,要先對(duì)知識(shí)點(diǎn)進(jìn)行梳理,把教材上的每一個(gè)例題、習(xí)題再做一遍,確;靖拍睢⒐降壤喂陶莆,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達(dá)。
2、要提高復(fù)習(xí)效率,必須使自己的思維與老師的思維同步。而預(yù)習(xí)則是達(dá)到這一目的的重要途徑。沒有預(yù)習(xí),聽老師講課,會(huì)感到老師講的都重要,抓不住老師講的重點(diǎn);而預(yù)習(xí)了之后,再聽老師講課,就會(huì)在記憶上對(duì)老師講的內(nèi)容有所取舍,把重點(diǎn)放在自己還未掌握的內(nèi)容上,提高學(xué)習(xí)效率。
3、學(xué)好數(shù)學(xué)要做大量的題,但反過來做了大量的題,數(shù)學(xué)不一定好!安灰灶}量論英雄”,題海戰(zhàn)術(shù),有時(shí)候往往起到事倍功半的效果,因此要提高解題的效率。做題的目的在于檢查學(xué)的知識(shí),方法是否掌握得很好。如果掌握得不準(zhǔn),甚至有偏差,那么多做題的.結(jié)果,反而鞏固了缺欠,在準(zhǔn)確地把握住基本知識(shí)和方法的基礎(chǔ)上做一定量的練習(xí)是必要的,但是要有針對(duì)性地做題,突出重點(diǎn),抓住關(guān)鍵。
4、復(fù)習(xí)中,所謂突出重點(diǎn),主要是指突出教材中的重點(diǎn)知識(shí),突出不易理解或尚未理解深透的知識(shí),突出數(shù)學(xué)思想與解題方法。數(shù)學(xué)思想與方法是數(shù)學(xué)的精髓,是聯(lián)系數(shù)學(xué)中各類知識(shí)的紐帶。要抓住教材中的重點(diǎn)內(nèi)容,掌握分析方法,從不同角度出發(fā)思索問題,由此探索一題多解、一題多變和一題多用之法。培養(yǎng)正確地把日常語言轉(zhuǎn)化為代數(shù)、幾何語言。并逐步掌握聽、說、讀、寫譯的數(shù)學(xué)語言技能。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
考點(diǎn)1
相似三角形的概念、相似比的意義、畫圖形的放大和縮小。
考核要求:
。1)理解相似形的概念;
。2)掌握相似圖形的特點(diǎn)以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點(diǎn)2
平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計(jì)算。
注意:被判定平行的一邊不可以作為條件中的對(duì)應(yīng)線段成比例使用。
考點(diǎn)3
相似三角形的概念
考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義。
考點(diǎn)4
相似三角形的判定和性質(zhì)及其應(yīng)用
考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個(gè)判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用。
考點(diǎn)5
三角形的重心
考核要求:知道重心的定義并初步應(yīng)用。
考點(diǎn)6
向量的有關(guān)概念
考點(diǎn)7
向量的加法、減法、實(shí)數(shù)與向量相乘、向量的線性運(yùn)算
考核要求:掌握實(shí)數(shù)與向量相乘、向量的線性運(yùn)算
考點(diǎn)8
銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考點(diǎn)9
解直角三角形及其應(yīng)用
考核要求:
。1)理解解直角三角形的意義;
。2)會(huì)用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡(jiǎn)單的實(shí)際問題,尤其應(yīng)當(dāng)熟練運(yùn)用特殊銳角的三角比的值解直角三角形。
考點(diǎn)10
函數(shù)以及函數(shù)的定義域、函數(shù)值等有關(guān)概念,函數(shù)的表示法,常值函數(shù)
考核要求:
。1)通過實(shí)例認(rèn)識(shí)變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;
。2)知道常值函數(shù);
。3)知道函數(shù)的表示方法,知道符號(hào)的意義。
考點(diǎn)11
用待定系數(shù)法求二次函數(shù)的解析式
考核要求:
。1)掌握求函數(shù)解析式的方法;
。2)在求函數(shù)解析式中熟練運(yùn)用待定系數(shù)法。
注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原。
考點(diǎn)12
畫二次函數(shù)的圖像
考核要求:
(1)知道函數(shù)圖像的意義,會(huì)在平面直角坐標(biāo)系中用描點(diǎn)法畫函數(shù)圖像
(2)理解二次函數(shù)的圖像,體會(huì)數(shù)形結(jié)合思想;
。3)會(huì)畫二次函數(shù)的大致圖像。
考點(diǎn)13
二次函數(shù)的圖像及其基本性質(zhì)
考核要求:
。1)借助圖像的直觀、認(rèn)識(shí)和掌握一次函數(shù)的性質(zhì),建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;
。2)會(huì)用配方法求二次函數(shù)的頂點(diǎn)坐標(biāo),并說出二次函數(shù)的有關(guān)性質(zhì)。
注意:
。1)解題時(shí)要數(shù)形結(jié)合;
(2)二次函數(shù)的平移要化成頂點(diǎn)式。
考點(diǎn)14
圓心角、弦、弦心距的概念
考核要求:清楚地認(rèn)識(shí)圓心角、弦、弦心距的概念,并會(huì)用這些概念作出正確的判斷。
考點(diǎn)15
圓心角、弧、弦、弦心距之間的關(guān)系
考核要求:認(rèn)清圓心角、弧、弦、弦心距之間的關(guān)系,在理解有關(guān)圓心角、弧、弦、弦心距之間的關(guān)系的定理及其推論的基礎(chǔ)上,運(yùn)用定理進(jìn)行初步的幾何計(jì)算和幾何證明。
考點(diǎn)16
垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識(shí)點(diǎn)之一。
考點(diǎn)17
直線與圓、圓與圓的位置關(guān)系及其相應(yīng)的數(shù)量關(guān)系
直線與圓的位置關(guān)系可從與之間的關(guān)系和交點(diǎn)的個(gè)數(shù)這兩個(gè)側(cè)面來反映。在圓與圓的位置關(guān)系中,常需要分類討論求解。
考點(diǎn)18
正多邊形的有關(guān)概念和基本性質(zhì)
考核要求:熟悉正多邊形的有關(guān)概念(如半徑、邊心距、中心角、外角和),并能熟練地運(yùn)用正多邊形的基本性質(zhì)進(jìn)行推理和計(jì)算,在正多邊形的計(jì)算中,常常利用正多邊形的半徑、邊心距和邊長(zhǎng)的一半構(gòu)成的直角三角形,將正多邊形的計(jì)算問題轉(zhuǎn)化為直角三角形的計(jì)算問題。
考點(diǎn)19
畫正三、四、六邊形。
考核要求:能用基本作圖工具,正確作出正三、四、六邊形。
考點(diǎn)20
確定事件和隨機(jī)事件
考核要求:
。1)理解必然事件、不可能事件、隨機(jī)事件的'概念,知道確定事件與必然事件、不可能事件的關(guān)系;
。2)能區(qū)分簡(jiǎn)單生活事件中的必然事件、不可能事件、隨機(jī)事件。
考點(diǎn)21
事件發(fā)生的可能性大小,事件的概率
考核要求:
。1)知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機(jī)事件發(fā)生的可能事件的大小并排出大小順序;
(2)知道概率的含義和表示符號(hào),了解必然事件、不可能事件的概率和隨機(jī)事件概率的取值范圍;
(3)理解隨機(jī)事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會(huì)根據(jù)大數(shù)次試驗(yàn)所得頻率估計(jì)事件的概率。
注意:
(1)在給可能性的大小排序前可先用“一定發(fā)生”、“很有可能發(fā)生”、“可能發(fā)生”、“不太可能發(fā)生”、“一定不會(huì)發(fā)生”等詞語來表述事件發(fā)生的可能性的大;
。2)事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗(yàn)的次數(shù)的多少有關(guān),只有當(dāng)試驗(yàn)次數(shù)足夠大時(shí)才能更精確。
考點(diǎn)22
等可能試驗(yàn)中事件的概率問題及概率計(jì)算
考核要求:
。1)理解等可能試驗(yàn)的概念,會(huì)用等可能試驗(yàn)中事件概率計(jì)算公式來計(jì)算簡(jiǎn)單事件的概率;
(2)會(huì)用枚舉法或畫“樹形圖”方法求等可能事件的概率,會(huì)用區(qū)域面積之比解決簡(jiǎn)單的概率問題;
。3)形成對(duì)概率的初步認(rèn)識(shí),了解機(jī)會(huì)與風(fēng)險(xiǎn)、規(guī)則公平性與決策合理性等簡(jiǎn)單概率問題。
注意:
。1)計(jì)算前要先確定是否為可能事件;
。2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點(diǎn)23
數(shù)據(jù)整理與統(tǒng)計(jì)圖表
考核要求:
。1)知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別;
。2)結(jié)合有關(guān)代數(shù)、幾何的內(nèi)容,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獲取有關(guān)信息。
考點(diǎn)24
統(tǒng)計(jì)的含義
考核要求:
(1)知道統(tǒng)計(jì)的意義和一般研究過程;
。2)認(rèn)識(shí)個(gè)體、總體和樣本的區(qū)別,了解樣本估計(jì)總體的思想方法。
考點(diǎn)25
平均數(shù)、加權(quán)平均數(shù)的概念和計(jì)算
考核要求:
。1)理解平均數(shù)、加權(quán)平均數(shù)的概念;
(2)掌握平均數(shù)、加權(quán)平均數(shù)的計(jì)算公式。注意:在計(jì)算平均數(shù)、加權(quán)平均數(shù)時(shí)要防止數(shù)據(jù)漏抄、重抄、錯(cuò)抄等錯(cuò)誤現(xiàn)象,提高運(yùn)算準(zhǔn)確率。
考點(diǎn)26
中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差的概念和計(jì)算
考核要求:
。1)知道中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差的概念;
。2)會(huì)求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差,并能用于解決簡(jiǎn)單的統(tǒng)計(jì)問題。
注意:
。1)當(dāng)一組數(shù)據(jù)中出現(xiàn)極值時(shí),中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;
(2)求中位數(shù)之前必須先將數(shù)據(jù)排序。
考點(diǎn)27
頻數(shù)、頻率的意義,畫頻數(shù)分布直方圖和頻率分布直方圖
考核要求:
。1)理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關(guān)系式;
。2)會(huì)畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關(guān)的實(shí)際問題。解題時(shí)要注意:頻數(shù)、頻率能反映每個(gè)對(duì)象出現(xiàn)的頻繁程度,但也存在差別:在同一個(gè)問題中,頻數(shù)反映的是對(duì)象出現(xiàn)頻繁程度的絕對(duì)數(shù)據(jù),所有頻數(shù)之和是試驗(yàn)的總次數(shù);頻率反映的是對(duì)象頻繁出現(xiàn)的相對(duì)數(shù)據(jù),所有的頻率之和是1。
考點(diǎn)28
中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差、頻數(shù)、頻率的應(yīng)用
考核要求:
。1)了解基本統(tǒng)計(jì)量(平均數(shù)、眾數(shù)、中位數(shù)、方差、標(biāo)準(zhǔn)差、頻數(shù)、頻率)的意計(jì)算及其應(yīng)用,并掌握其概念和計(jì)算方法;
。2)正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計(jì)算結(jié)果作出判斷和預(yù)測(cè);
。3)能將多個(gè)圖表結(jié)合起來,綜合處理圖表提供的數(shù)據(jù),會(huì)利用各種統(tǒng)計(jì)量來進(jìn)行推理和分析,研究解決有關(guān)的實(shí)際生活中問題,然后作出合理的解決。
如何整理數(shù)學(xué)學(xué)科課堂筆記?
一、內(nèi)容提綱。
老師講課大多有提綱,并且講課時(shí)老師會(huì)將一堂課的線索脈絡(luò)、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現(xiàn)在黑板上。同時(shí),教師會(huì)使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識(shí)框架,對(duì)所學(xué)知識(shí)做到胸有成竹、清晰完整。
二、疑難問題。
將課堂上未聽懂的問題及時(shí)記下來,便于課后請(qǐng)教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對(duì)部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識(shí)的斷層、方法的缺陷。
三、思路方法。
對(duì)老師在課堂上介紹的解題方法和分析思路也應(yīng)及時(shí)記下,課后加以消化,若有疑惑,先作獨(dú)立分析,因?yàn)橛锌赡苁亲约豪斫忮e(cuò)誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。在這基礎(chǔ)上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結(jié)。注意記下老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。同時(shí),很多有經(jīng)驗(yàn)的老師在課后小結(jié)時(shí),一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點(diǎn)明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動(dòng)權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。
五、錯(cuò)誤反思。
學(xué)習(xí)過程中不可避免地會(huì)犯這樣或那樣的錯(cuò)誤,記下自己所犯的錯(cuò)誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時(shí)也應(yīng)注明錯(cuò)誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數(shù)學(xué)常用解題技巧有哪些?
第一,應(yīng)堅(jiān)持由易到難的做題順序。
近年來高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱為是755結(jié)構(gòu)。基礎(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。
第二,審題是關(guān)鍵。
把題給看清楚了再動(dòng)筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開始寫的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。
第三,屬于非智力因素導(dǎo)致想不起來。
本來是很簡(jiǎn)單的題比如說是做到第三題、第四題的時(shí)候不是難題,但想不起來了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì)做怎么辦?應(yīng)先跳過去,不是這道題不會(huì)做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會(huì)頓悟,豁然開朗。
第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。
因?yàn)檫x擇題和填空題都是看結(jié)果不看過程,因此在這個(gè)過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃,從已知的開始也不看它的四個(gè)選項(xiàng),從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡(jiǎn)單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個(gè)必然的過程,讓誰寫、誰看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過程,這是規(guī)范答題。
學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒有理解透徹。
所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說明此題的“題眼”及巧妙之處,收獲會(huì)更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。
3、錯(cuò)一次反思一次
每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了。
4、分析試卷總結(jié)經(jīng)驗(yàn)
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對(duì)邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對(duì)邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對(duì)邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對(duì)邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
中考數(shù)學(xué)知識(shí)點(diǎn)
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的`取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號(hào)k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第一、三象限。在每個(gè)象限內(nèi),y
隨x 的增大而減小。
、賦的取值范圍是x0,
y的取值范圍是y0;
、诋(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別
在第二、四象限。在每個(gè)象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),過點(diǎn)P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P(yáng)怎樣移動(dòng),△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
圓的初步認(rèn)識(shí)
一、圓及圓的相關(guān)量的定義(28個(gè))
1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
二、有關(guān)圓的字母表示方法(7個(gè))
圓--⊙ 半徑r 弧--⌒ 直徑d
扇形弧長(zhǎng)/圓錐母線l 周長(zhǎng)C 面積S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,POP在⊙O上,PO=r;P在⊙O內(nèi),PO
2.圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。
4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。
5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。
8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
9.直線AB與圓O的位置關(guān)系(設(shè)OPAB于P,則PO是AB到圓心的距離):
AB與⊙O相離,POAB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的`切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且Rr,圓心距為P):
外離P外切P=R+r;相交R-r
三、有關(guān)圓的計(jì)算公式
1.圓的周長(zhǎng)C=2d 2.圓的面積S=s=3.扇形弧長(zhǎng)l=nr/180
4.扇形面積S=n/360=rl/2 5.圓錐側(cè)面積S=rl
四、圓的方程
1.圓的標(biāo)準(zhǔn)方程
在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是
(x-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識(shí):圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.
五、圓與直線的位置關(guān)系判斷
鏈接:圓與直線的位置關(guān)系(一.5)
平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號(hào)可確定圓與直線的位置關(guān)系如下:
如果b^2-4ac0,則圓與直線有2交點(diǎn),即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切
如果b^2-4ac0,則圓與直線有0交點(diǎn),即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離
當(dāng)x1
當(dāng)x=-C/A=x1或x=-C/A=x2時(shí),直線與圓相切
圓的定理:
1不在同一直線上的三點(diǎn)確定一個(gè)圓。
2垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2
1圓的兩條平行弦所夾的弧相等
3圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
希望這篇20xx中考數(shù)學(xué)知識(shí)點(diǎn)匯總,可以幫助更好的迎接即將到來的考試!
【中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
數(shù)學(xué)中考知識(shí)點(diǎn)總結(jié)07-15
數(shù)學(xué)中考知識(shí)點(diǎn)總結(jié)[精選]07-19
中考數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)02-08
中考數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)01-13
中考數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)02-25
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-24
【通用】數(shù)學(xué)中考知識(shí)點(diǎn)總結(jié)07-19
【優(yōu)】中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-09