2017中考數(shù)學幾何輔助線技巧
輔助線對于同學們來說都不陌生,解幾何題的時候經(jīng)常用到。當題目給出的條件不夠時,我們通過添加輔助線構成新圖形,形成新關系,使分散的條件集中,建立已知與未知的橋梁,把問題轉(zhuǎn)化為自己能解決的問題,這便是輔助線的作用。以下是CN人才小編整理的相關內(nèi)容,不妨隨小編一起了解一下。
★添輔助線有二種情況:
▌1、按定義添輔助線:
如證明二直線垂直可延長使它們相交后證交角為90°;證線段倍半關系可倍線段取中點或半線段加倍;證角的倍半關系也可類似添輔助線。
▌2、按基本圖形添輔助線:
每個幾何定理都有與它相對應的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時補完整基本圖形,因此“添線”應該叫做“補圖”!這樣可防止亂添線,添輔助線也有規(guī)律可循。舉例如下:
(1)平行線是個基本圖形:
當幾何中出現(xiàn)平行線時添輔助線的關鍵是添與二條平行線都相交的等第三條直線
(2)等腰三角形是個簡單的基本圖形:
當幾何問題中出現(xiàn)一點發(fā)出的二條相等線段時往往要補完整等腰三角形。出現(xiàn)角平分線與平行線組合時可延長平行線與角的二邊相交得等腰三角形。
(3)等腰三角形中的.重要線段是個重要的基本圖形:
出現(xiàn)等腰三角形底邊上的中點添底邊上的中線;出現(xiàn)角平分線與垂線組合時可延長垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。
(4)直角三角形斜邊上中線基本圖形
出現(xiàn)直角三角形斜邊上的中點往往添斜邊上的中線。出現(xiàn)線段倍半關系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。
(5)三角形中位線基本圖形
幾何問題中出現(xiàn)多個中點時往往添加三角形中位線基本圖形進行證明當有中點沒有中位線時則添中位線,當有中位線三角形不完整時則需補完整三角形;當出現(xiàn)線段倍半關系且與倍線段有公共端點的線段帶一個中點則可過這中點添倍線段的平行線得三角形中位線基本圖形;當出現(xiàn)線段倍半關系且與半線段的端點是某線段的中點,則可過帶中點線段的端點添半線段的平行線得三角形中位線基本圖形。
(6)全等三角形:
全等三角形有軸對稱形,中心對稱形,旋轉(zhuǎn)形與平移形等;如果出現(xiàn)兩條相等線段或兩個檔相等角關于某一直線成軸對稱就可以添加軸對稱形全等三角形:或添對稱軸,或?qū)⑷切窝貙ΨQ軸翻轉(zhuǎn)。當幾何問題中出現(xiàn)一組或兩組相等線段位于一組對頂角兩邊且成一直線時可添加中心對稱形全等三角形加以證明,添加方法是將四個端點兩兩連結(jié)或過二端點添平行線
(7)相似三角形:
相似三角形有平行線型(帶平行線的相似三角形),相交線型,旋轉(zhuǎn)型;當出現(xiàn)相比線段重疊在一直線上時(中點可看成比為1)可添加平行線得平行線型相似三角形。若平行線過端點添則可以分點或另一端點的線段為平行方向,這類題目中往往有多種淺線方法。
(8)特殊角直角三角形
當出現(xiàn)30,45,60,135,150度特殊角時可添加特殊角直角三角形,利用45角直角三角形三邊比為1:1:√2;30度角直角三角形三邊比為1:2:√3進行證明
(9)半圓上的圓周角
出現(xiàn)直徑與半圓上的點,添90度的圓周角;出現(xiàn)90度的圓周角則添它所對弦---直徑;平面幾何中總共只有二十多個基本圖形就像房子不外有一砧,瓦,水泥,石灰,木等組成一樣。
幾何常見輔助線口訣
三角形
圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現(xiàn)。
角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。
線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。
三角形中有中線,倍長中線得全等。
四邊形
平行四邊形出現(xiàn),對稱中心等分點。梯形問題巧轉(zhuǎn)換,變?yōu)槿腔蚱剿摹?/p>
平移腰,移對角,兩腰延長作出高。如果出現(xiàn)腰中點,細心連上中位線。
上述方法不奏效,過腰中點全等造。證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
圓形
半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑聯(lián)。
切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。還要作個內(nèi)接圓,內(nèi)角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點公切線。
若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。
【中考數(shù)學幾何輔助線技巧】相關文章:
中考數(shù)學解題的技巧03-08
數(shù)學中考的考試技巧03-09
中考數(shù)學的技巧策略03-09
中考數(shù)學的學習技巧03-10
中考數(shù)學復習技巧04-08
中考數(shù)學答題技巧05-10
中考數(shù)學高分技巧講解03-08
中考數(shù)學高分重要技巧03-08
中考數(shù)學復習技巧指導04-08