《圓柱的體積》數(shù)學教學設計(精選13篇)
作為一名人民教師,時常要開展教學設計的準備工作,編寫教學設計有利于我們科學、合理地支配課堂時間。那么問題來了,教學設計應該怎么寫?以下是小編為大家整理的《圓柱的體積》數(shù)學教學設計,歡迎閱讀與收藏。
《圓柱的體積》數(shù)學教學設計 篇1
【教材簡析】:
本節(jié)內容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關系,可推導出圓柱的體積計算公式。
【教學內容】:
p19-20頁的內容和例題,完成“做一做”及練習三第1~4題。
【教學目標】:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉化的數(shù)學思想和方法,解決實際問題的能力。
3、滲透轉化思想,培養(yǎng)學生的自主探索意識。
【教學重點】:
掌握圓柱體積的計算公式。
【教學難點】:
圓柱體積的計算公式的推導。
【教學過程】:
第一課時
本冊總課時:1—2課時
一、復習
1、長方體的體積公式是什么?(長方體的體積=長x寬x高,長方體和正方體體積的統(tǒng)一公式“底面積x高”,即長方體的體積=底面積x高)
2、什么叫做物體的體積?你會計算下面那些圖形的體積?
3、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。
4、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的'長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。
二、新課
1、圓柱體積計算公式的推導。
(1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的12塊,把它們拼成一個近似長方體的立體圖形——課件演示)
。2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
。1)拼成近似長方體的體積與原來的圓柱體積有什么關系?(相等)
。2)拼成的近似長方體的底面積與原來圓柱的底面積有什么關系?(相等)
。3)拼成的近似長方體的高與原來的圓柱的高有什么關系?(相等)
。3)通過觀察,使學生明確:
長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
長方體的體積=底面積x高,所以圓柱的體積=底面積x高,
v=sh
圓柱的體積計算公式是:
v=sh
2、課堂練習。
。1)出示做一做:一根圓柱形鋼材,底面積是75平方厘米,長90厘米。它的體積是多少?
。2)指名學生分別回答下面的問題:
①這道題已知什么?求什么?
、谀懿荒芨鶕(jù)公式直接計算?
、塾嬎阒耙⒁馐裁矗浚ㄓ嬎銜r既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)
(3)讓學生解答和板算,最后師生共同完成、
解:v=sh
=75x90
。675(立方厘米)
答:它的體積是675立方厘米。
3、引導思考。
如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?(v=πrh)
4、作業(yè)。
《圓柱的體積》數(shù)學教學設計 篇2
教學內容:
青教版九年義務教育六年制小學數(shù)學六年級下冊第23—28頁。
教材簡析:
該信息窗呈現(xiàn)的是圓柱和圓錐形狀的冰淇淋盒,并分別標出了它們的底面直徑和高。引導學生提出問題,引入對圓柱、圓錐體積計算的探索和學習!昂献魈剿鳌敝械谝粋紅點部分是學習圓柱的體積。
教學目標:
1、結合具體情境,通過探索與發(fā)現(xiàn),理解并掌握圓柱并能解決簡單的實際問題。
2、經(jīng)歷探索圓柱計算公式的過程,進一步發(fā)展空間觀念。
3、在觀察與實驗、猜測與驗證、交流與反思等活動中,初步體會數(shù)學知識的產(chǎn)生、形成與發(fā)展的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,初步了解并掌握一些數(shù)學思想方法。
教學重點和難點:
圓柱、圓錐體積的計算方法,以及體積公式的探索推導過程。
教具準備:
多媒體課件、圓柱體積學具、沙子等。
第一課時
教學過程:
一、創(chuàng)設情境,激趣引入。
談話:同學們,天氣漸漸熱了,在夏季同學們最喜歡的冷飲是什么?(生回答)
課件出示:兩個圓柱體冰淇淋。
談話:看,小明買了兩個冰淇淋,你能猜猜哪種包裝盒體積大嗎?
。ㄉ聹y)這節(jié)課我們就來研究圓柱的體積。(板書課題——圓柱體的體積。)
設計意圖:
從生活中常見的例子導入新課,從中培養(yǎng)學生在生活中發(fā)現(xiàn)數(shù)學問題、提出問題的意識。學生的猜測為后面的`實驗驗證做好了鋪墊,激發(fā)學生探究新知的欲望。
二、回憶舊知,實現(xiàn)遷移。
談話:怎樣求圓柱的體積呢?我們也許能從以前研究問題的方法里得到啟示,找到解決問題的辦法。請大家想一想,在學習圓的面積時,我們是怎樣推導出圓的面積計算公式的?
。▽W生回答后,教師利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關系,進而推導出圓面積計算公式的過程。)
設計意圖:
通過回顧圓的面積的推導方法,巧妙地運用舊知識進行遷移。
三、利用素材,探索新知。
㈠交流猜測
談話:通過剛才的回顧,你們能想辦法將圓柱轉化成我們已經(jīng)學過的立體圖形來求體積嗎?
生:我們學過長方體的體積,可不可以將圓柱轉化成長方體呢?
師談話:你的想法很好,怎樣轉化呢?
生討論,交流。
生匯報,可能會有以下幾種想法:
1、先在圓柱的底面上畫一個最大的正方形,再豎著切掉四周,得到一個長方體,然后把切下的四塊拼在一起。
2、可以把圓柱的底面分成許多相同的扇形,然后豎著切開,重新拼一拼。
3、如果是橡皮泥那樣的,可以把它重新捏成一個長方體,就能計算出它的體積了。
談話:請同學討論和評價一下,哪一種方法更合理呢?引導學生按照第二種方法進行驗證。
、鎸嶒烌炞C
學生動手進行實驗。
談話:請每個小組拿出學具,按照剛才第3小組的方法把它轉化為近似的長方體,并研究轉化后的長方體和原來圓柱體積、底面積、高之間的關系。
學生合作操作,集體研究、討論、記錄。
設計意圖本環(huán)節(jié)讓學生親自動手操作,再次感受“化圓為方”的思想。動手操作,是學生發(fā)現(xiàn)規(guī)律和獲取數(shù)學思想的重要途徑。
四、分析關系,總結公式
1、全班交流
談話:哪個小組愿意展示一下你們小組的研究結果?
引導學生發(fā)現(xiàn):
轉化后的形狀變了,但是體積沒有變,底面的面積沒有變,高也沒有變。
2、分析關系
引導說出:圓柱體轉化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。
3、總結公式。
談話:同學們真了不起!你們的發(fā)現(xiàn)非常正確。我們來看一看課件演示。
。ㄕn件分別演示將圓柱等分成16份、32份、64份的割拼過程,學生觀察、思考。)
談話:你發(fā)現(xiàn)了什么?
引導觀察:分的份數(shù)越多,拼成的圖形就越接近長方體。
。ㄕn件動態(tài)演示:圓柱的高——長方體的高,圓柱的底面積——長方體的底面積。)
談話:其實大家剛才又采用了“化圓為方”的方法將圓柱轉化成了長方體。你現(xiàn)在能總結出圓柱體積的計算公式嗎?說一說你是怎樣想的。
根據(jù)學生的回答教師板書:
長方體的體積=底面積x高
圓柱的體積=底面積x高
談話:你能用字母表示圓柱的體積計算公式嗎?V=Sh
設計意圖教師給予適當?shù)难菔,溝通圓面積計算公式的推導方法與圓柱體積計算公式推導方法的共同點——轉化法,便于學生順利推導出圓柱體積的計算公式。
五、利用公式,解決問題。
自主練習第1題、第2題、第3題
設計意圖鞏固練習及時讓學生利用結論解決問題,感受自己研究的重要價值,激發(fā)學習數(shù)學的興趣。
六、課堂總結
《圓柱的體積》數(shù)學教學設計 篇3
教學目標:
1、結合實際,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、讓學生經(jīng)歷觀察、猜想、驗證等數(shù)學活動過程,培養(yǎng)學生探究推理能力,體驗數(shù)學研究的方法。
3、通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結論的確定性,獲得成功的喜悅。
教學重點:
掌握和運用圓柱體積計算公式。
教學準點:
掌握圓柱體積公式的推導過程。
教學設想:
1、課前互動,我們做一個吹氣球的游戲,讓學生來對比氣球變大后所占用空間的變化。在熱烈的氣氛中讓學生感受物體的體積就是物體所占用空間的大小。
2、教學伊始我創(chuàng)設學具槽做圓柱學具這一睛境,讓學生感知圓柱體積的概念,再通過讓學生給這4個圓柱學具排序這一問題設疑,讓學生明確學習目標。
3、動手實踐是學生體驗的主要方式,合作交流是學生體驗的有效途徑。所以在教學中我為圖形轉化、猜想推理創(chuàng)設有助于學生自主探究的三步曲:第一步:選擇轉化的方法。第二步:體驗轉化的過程、第三步:驗證轉化的結果。引導學生開展觀察、操作、猜想、交流、轉化的活動,讓學生在數(shù)學活動中經(jīng)歷數(shù)學、體驗數(shù)學。
4、用字母表示公式已經(jīng)是學生很熟知的幾何知識,因此我為學生提供了與圓柱體積有關的字母,讓他們寫出相應的公式并在接下來的環(huán)節(jié)中引導學生發(fā)現(xiàn)公式與習題的聯(lián)系,讓他們對號入座。學生根據(jù)不同的公式進行計算,給4個圓柱學具排序。這樣可以深入理解不同的條件、不同的方法,同樣可以得到圓柱的體積,在對比算法中掌握新知。
5、體積和容積這兩個概念在五年級已經(jīng)學過,學生會說意義,但是通過了解,學生并不是真正理解圓柱的體積和容積。所以我在第一次探究中安排了這樣的環(huán)節(jié),讓學生在學習實踐中區(qū)別圓柱的容積和體積。從形象到抽象建立圓柱的體積概念,符合學生的認知規(guī)律。第二次探究則是加入表面積這一剛剛學過的內容,讓學生在為3道選擇問題的練習中達到區(qū)別體積、容積、表面積的目的,從而實現(xiàn)學習運用的最佳狀態(tài)。
6、最后的思維訓練是計算正方體中最大圓柱體的體積,給學生以生動、形象、直觀的認識,此題算法多樣,富于啟發(fā)地清晰揭示了知識的內在規(guī)律,使它和教學過程有機組合,把學習延伸到實際,讓知識在體驗中生成。
7、由于每個學生的知識經(jīng)驗、生活情景、思維方式的不同,對知識的學習也有獨特的理解和感受。所以我讓他們用今天的知識去解決生活中的問題,并寫成數(shù)學日記,讓他們用自己的.方式去體驗、探究學習過程。
教學過程:
一、問題導入,質疑問難
師:老師這里有兩個氣球,(師從兜里掏出兩個氣球,將其中一個遞給學生。)你試試把它們變大。(老師再把兩個氣球放回兜里。)為什么這個放不回去了?(因為其中一個的體積變大了。)看來它占據(jù)了很大的空間。教室中還有哪些物體占據(jù)空間?
師:這是一個制作學具的學具槽,想一想,它可以做出什么樣的學具來?
生:圓柱學具。
師:是的。仔細觀察,你有什么發(fā)現(xiàn)?
生:圓柱學具占據(jù)了學具槽的空間。
師:這就是圓柱學具的體積。你真善于發(fā)現(xiàn)!能用你的話說說,什么是圓柱的體積嗎?
生:圓柱的體積就是圓柱所占空間的大小。
師:誰來試著給這4個圓柱學具按體積從大到小排排序?你來試試。
生:體積大小接近,不能確定。
師:老師聽懂了,無法判斷的原因是不知道圓柱體積的大小,現(xiàn)在我們就來研究圓柱的體積。(師板書。)
二、圖形轉化。猜想推理
師:想一想,你有辦法得到這4個圓柱學具的體積嗎?(圓柱課件再從槽中跳出。)生:用公式計算。生:用水或沙子轉化計算。師:你們是怎樣轉化的,具體說說。
生:用橡皮泥轉化計算。
生:用圓形紙片疊加計算……
師:嗯,這些方法都很好,就在今天的課堂你會選擇哪種方法?
生:因為沒有實驗學具,所以只能用公式計算。
師:其他的方法可以在課后進行。
師:想用公式計算的同學,你想怎樣推導圓柱的體積公式呢?結合你們以往學習幾何圖形的經(jīng)驗,舉例說明。
生:大部分圖形公式的推導都是把新學的轉化為學過的。例如:圓形可以轉化為長方形。
師:聯(lián)系舊知識,采用轉化法,確實不錯。師:那現(xiàn)在它是一個圓柱,你想怎么辦?
生:像剛才一樣進行平均分。
師:你能具體說說嗎?
生:沿著圓柱的底面直徑平均切分成16個小扇形。
師:都說實踐出真知,接下來就請同學們拿出學具,動手嘗試著進行轉化,并說說轉化后的結果。
生:將圓柱沿底面直徑平均分成16個小扇形,切分之后,可以拼成一個近似的長方體。
師:(剛才我們將圓柱沿底面直徑平均分成16個小扇形,拼成一個近似的長方體。)如果想讓它更近似于長方體,你想分成多少份?(32)更近似一點。(64)你呢?(128)……
師:這是同學們剛才的轉化過程。
師:打開書,自由讀,用直線標記,找出關鍵詞,依照關鍵詞自由讀讀轉化的過程。
師:現(xiàn)在再請一名同學到前面來演示轉化過程,其他同學注意觀察,圓柱轉化為長方體后什么變了,什么沒變7(圓柱轉化為長方體時形狀變了,但是它們底面積、高和體積都沒變。)
總結文字公式:長方體體積=底面積x高
圓柱體體積=底面積x高
師:恭喜大家,我們已經(jīng)成功地推導出圓柱的體積公式。(掌聲鼓勵一下)老師這有一些字母:d、s、r、c、h、v、π。它們與圓柱體體積的計算公式息息相關,請你們用字母表示出圓柱的體積公式。
生:v=shv=(d/2)2πxhv=π2xhv=(c÷π/2)2πxh
師:對比這四個公式你又有什么新發(fā)現(xiàn)?(彩色粉筆畫線。)
生:相同之處都是底面積乘以高,不同是底面積求法不同。
師:謝謝你精彩的發(fā)現(xiàn),你叫什么名字,認識一下,老師會記住你的。
三、運用公式,解決問題
師:現(xiàn)在我們已經(jīng)知道了圓柱的體積公式,快來解決剛才的實際問題吧!這是我們要由大到小排序的4個圓柱學具,請你們拿出題卡計算出它們的體積并排序。
1號底面積50平方厘米,高2.1分米:
2號直徑是10厘米,高20厘米;
3號半徑是4厘米,高22厘米;
4號底面周長31.4厘米,高18厘米。
師:匯報一下你的計算和排序結果,并說說你應用了哪個公式?
師:與他答案相同的同學舉手示意一下,你是怎樣做的?現(xiàn)在你清楚了嗎?
師:看來,靈活運用公式,并選擇合理的算法。會使我們的學習更高效。
四、巧用公式,多重探究
師:同學們到現(xiàn)在為止,你都學到了哪些關于圓柱的知識?
生:表面積、體積、容積。
師:老師這里有一組習題。請你們選擇合適的問題。
師:讀完之后,你認為求什么就可以大聲地說出來。
。ㄉ后w積、容積、表面積。)
學具廠有一個制作學具的圓柱形鐵皮桶。它的底面直徑是22厘米,高是25厘米,_________?從里面量底面直徑是20厘米,高是25厘米______________9底面積是380平方厘米。側面積是1727平方厘米_________________?
師:說說你選擇問題的根據(jù)是什么?
生:體積是圓柱所占空間的大小。容積是圓柱能容納物體的大小,表面積是圓柱所有面積的總和。
五、開放訓練,拓展提升
師:學習很愉快,我們來慶祝一下:在一個棱長為a分米正方體盒中,放一個最大的圓柱體蛋糕,系上b分米長的絲帶,(打結部分忽略不計)挖去1根直徑為c厘米,高是d厘米的圓柱蠟燭空隙,這個蛋糕體積到底是多少呢?這次我們男女生比賽,列式不計算,看誰解法多并說明解題思路。
《圓柱的體積》數(shù)學教學設計 篇4
教學內容:
人教版《九年義務教育六年制小學數(shù)學》(第十二冊)圓柱體積。
教學目標:
1、結合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究的方法。
3、通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結論的確定性,獲得成功的喜悅。
教學重點:
掌握和運用圓柱體積計算公式。
教學難點:
圓柱體積計算公式的推導過程。
教學過程
一、情景引入
1、教學開始首先出示了一個裝了半杯水的燒杯,然后拿出一個圓柱形物體準備投入水中并讓學生觀察:會發(fā)生什么情況?由這個發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(學生互相討論后匯報,教師設疑)
二、自主探究
1、比較大小、探究圓柱的體積與哪些要素有關。
。1)、先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?
(2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。
(3)、讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結果填入實驗報告1中。(課件出示)
(4)、學生通過動手操作匯報結論:當?shù)椎葧r,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關。
2、大膽猜想,感知體積公式,確定探究目標。
。1)、再次設疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學生想如何計算圓柱的體積。
。2)、引導學生回憶圓的`面積公式和長方體的體積公式的推導過程。
(3)、讓學生思考:怎樣計算圓柱的體積呢,依據(jù)學過的知識,你可以做出怎樣的假設?
。4)、學生小組討論交流并匯報:圓柱平均分成若干小扇形體后應該也能夠轉化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
。5)、讓學生依據(jù)假設結論分組測量圓柱c和圓柱d的有關數(shù)據(jù),用計算器計算體積,并填入實驗報告2中。(課件出示)
4、確定方法,探究實驗,驗證體積公式。
。1)、首先要求學生利用實驗工具,自主商討確定研究方法。
。2)、學生通過討論交流確定了兩種驗證方案。
方案一:將圓柱c放入水中,驗證圓柱c的體積。
方案二:將學具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。
。3)、學生按照自己所設想的方案動手實驗,并記錄有關數(shù)據(jù),填入實驗報告2中。
。4)、實驗后讓學生對數(shù)據(jù)進行分析:用實驗的方法得出的數(shù)據(jù)與實驗前假想計算的數(shù)據(jù)進行比較,你發(fā)現(xiàn)了什么?
。5)、學生匯報:實驗的結果與猜想的結果基本相同。
。6)、教師用課件演示將圓柱體轉化成長方體的過程,向學生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。
。7)、小結:
要想求出一個圓柱的體積,需要知道什么條件?
。8)、學生自學第8頁例4上面的一段話:用字母表示公式。
學生反饋自學情況:
v=sh
三、鞏固發(fā)展
1、課件出示例4,學生獨立完成。
指名說說這樣列式的依據(jù)是什么。
2、鞏固反饋
3、完成第9頁的“試一試”和練一練”中的兩道題。
。ā熬氁痪殹敝涣惺,不計算)
集體訂正,說一說圓柱體的體積還可以怎樣算?
4、一個圓柱形水杯的底面直徑是10厘米,高是15厘米,已知水杯中水的體積是整個水杯體積的2/3,計算水杯中水的體積?
5、拓展練習
。1)、一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))
。2)、一個底面直徑是20厘米的圓柱形容器里,放進一個不規(guī)則的鑄鐵零件后,容器里的水面升高4厘米,求這鑄鐵零件的體積是多少?
四、全課小結
談談這節(jié)課你有哪些收獲。
《圓柱的體積》數(shù)學教學設計 篇5
【教學過程】
一、揭示課題,確定目標
談話:前面我們認識了圓柱,學習了圓柱的底面積、側面積和表面積,今天學習“圓柱的體積”。(教師板書,學生齊讀)
啟發(fā):看到這個課題,你們會想到什么?這堂課要解決什么問題呀?(可能學生會提出以下幾個問題)
引導:
。1)什么是圓柱的體積?
。2)圓柱的體積和什么有關?
。3)圓柱的體積公式是怎樣推導出來的?
(4)圓柱的體積是怎樣求出來的?
。5)學習圓柱的體積公式有什么用?
談話:對!剛才這幾位同學跟老師想的一樣。
啟發(fā):圓柱的體積就是圓柱所占空間的大小
談話:這堂課我們主要解決三個問題:(出示探究問題)
1、圓柱的體積和什么有關?
2、這個公式是怎樣推導出來的?
3、學習了圓柱的體積能解決什么實際問題?
【設計意圖】直接揭示課題,啟發(fā)學生自己提出教學的要求,這樣既創(chuàng)設了問題情境,激發(fā)學生學習的興趣,又使學生明確這堂課的教學目標。
二、溫故知新,自學課本
1、提出問題
談話:現(xiàn)在請大家回憶一下,我們以前學過哪些立體圖形的體積計算。是怎樣計算的?
引導:我們已經(jīng)學過長方體、正方體的體積計算。(教師隨著學生的回答,逐一出示出上述圖形)。
談話:長方體的體積=長x寬x高
正方體的體積=棱長x棱長x棱長
統(tǒng)一為:長方體或正方體的體積=底面積x高
談話:長方體和正方體和今天學習的圓柱有什么顯著的區(qū)別?
引導:長方體的面都是平面圖形,圓柱的側面是一個曲面。
談話:因為圓柱的側面是一個曲面,計算圓柱的體積就比較困難了。能不能直接用體積單位去量呢?
引導:它的側面是一個曲面,用體積單位直接量是有困難的。
2、引發(fā)猜想
談話:圓柱的體積和什么有關系呢?(準備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)
引導:圓柱體的體積既和底面積有關,又和高有關。
3、自學課本
談話:圓柱體的體積和底面積、高到底有什么關系呢?如何求圓柱體的體積?
啟發(fā):請大家閱讀課本,在課本中尋找答案。(教師要求學生利用預先準備好的平均分成16份圓柱學具拼一拼,學生一邊看書,一邊操作。學生閱讀課本后,全班交流。)
引導:我們用圖形轉化的方法,求圓柱的體積。
談話:這個辦法很好。那么把圓柱轉化成什么圖形呢?
引導:長方體。
談話:以前我們學習圓的面積時也是運用轉化的策略,把圓轉化成近似的長方形,“化曲為直”、“化圓為方”推導出圓的面積計算公式。
(用多媒體演示圓形的轉化過程,邊出示、邊交流)
【設計意圖】在不能用體積單位直接量的情況下,啟發(fā)學生運用轉化的數(shù)學思想解決問題。通過復習了舊知識,又為學習新知識作好鋪墊,能夠促進學生充分運用遷移規(guī)律把新舊知識聯(lián)系起來組成一個新的知識結構。
三、合作交流發(fā)展能力
談話:同學們觀察一下,拼成的是什么圖形?
引導:近似的.長方體。
啟發(fā):說得很好,為什么說是近似的長方體,哪里不太像?
引導:長都是許多弧線組成,不是直的。
談話:這里我們把圓柱分成16等分,還能分嗎?
談話:究竟能分多少份呢?
引導:無數(shù)份,可以永遠分下去。
談話:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長就越接近于直線段,這個圖形就越接近于長方體。
四、師生合作歸納結論
談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發(fā)現(xiàn)了什么?
匯報:把圓柱體轉化為近似的長方體,形狀變了,體積沒有變。
談話:要求圓柱的體積,我們只要求轉化后的長方體的體積就可以了。
匯報:
。1)轉化后的近似長方體的底面積與原來的圓柱體的底面積相等。
。2)轉化后的近似長方體的高與原來的圓柱體的高相等。
因為:長方體的體積=底面積x高
所以:圓柱的體積=底面積x高
。ń處熞髮W生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導的過程。)
長方體的體積=底面積x高
圓柱的體積=底面積x高
交流:我們也可以用字母表示圓柱的體積計算公式:v=sh(板書)
引導:剛才我們的猜想是正確的,圓柱的體積既和底面積有關,又和高有關。
現(xiàn)在請同學們把圓柱體積公式的推導過程再完整地說一遍。
談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關。
通過分一分、拼一拼我們把圓柱轉化成了近似的長方體。
通過比一比、算一算成功地推導出圓柱的體積計算公式,解決了我們前兩個要探究的問題。
【設計意圖】要求每個學生動手操作,打破了過去教師演示教具學生看的框框,并滲透轉化、無限等數(shù)學思想,讓學生自己從嘗試中推導圓柱體積的公式。
《圓柱的體積》數(shù)學教學設計 篇6
一、課前系統(tǒng)部分
。ㄒ唬⒄n標分析
《圓柱的體積》是冀教版六年級數(shù)學下冊的內容,在課程標準中屬于第二階段(四-六年級)中第二個版塊圖形與幾何中的教學內容,對《圓柱的體積》教學內容的要求是:結合具體情境,探索并掌握圓柱的體積的計算方法,并能解決簡單的實際問題。
。ǘ、教材分析
《圓柱的體積》是冀教版六年級數(shù)學下冊的內容,在學生初步認識了圓柱體的基礎上,進一步研究圓柱體的特征,讓學生比較深入地研究立體幾何圖形,是學生發(fā)展空間觀念的又一次飛躍。圓柱體是基本的立體幾何圖形,通過學習,可以培養(yǎng)學生形成初步的空間觀念,為下一步學習“圓錐的體積”打下基礎。
。ㄈW生分析
六年級的學生已經(jīng)有了較豐富的生活經(jīng)驗,這些感性經(jīng)驗是他們進一步學習的基礎,本節(jié)課的學習過程正是讓學生的感性經(jīng)驗上升到理性經(jīng)驗的過程,符合學生的年齡特征和認知規(guī)律,在這一過程中,能使學生體會到認識事物和歸納事物特征的方法,學會運用數(shù)學的思維方式去認識世界。
。ㄋ模⒔虒W目標
知識與能力:通過推導圓柱體積公式的過程,向學生滲透轉化思想,建立空間觀念,培養(yǎng)學生判斷、推理的能力和遷移能力。
過程與方法:結合具體情境和實踐活動,理解圓柱體積的含義。探索并掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
情感態(tài)度與價值觀:感悟數(shù)學知識的內在聯(lián)系,增強學生應用數(shù)學的意識,激發(fā)學生的學習興趣。
(五)、教學重難點:
1、教學重點:掌握圓柱體積的計算公式。
2、教學難點:圓柱體積計算公式的推導。
。⒔虒W策略
介紹進行課堂教學所要采取的方法與技巧。實踐探索、小組合作交流、演繹推理。
。ㄆ撸⒔虒W用具:電腦課件、圓柱體積演示器、正圓柱體。
二、課堂系統(tǒng)部分——教學過程
。ㄒ唬(chuàng)設情境,引起猜想:
1、激發(fā)興趣:圓柱體轉化成近似長方體。
課件展示:一個長方體的鋼錠通過鍛造形成一個與長方體高相等的圓柱體模具。)師:通過觀察,同學們發(fā)現(xiàn)這兩個物體都有什么是相同的?
生:體積、高。
。ㄔO計意圖說明:引導學生對所學知識的遷移,初步感知圓柱的體積計算與長方體的體積計算有關。)
師:揭示課題:圓柱的體積。
。ǘ、推導圓柱體積計算公式
師:怎樣用我們已有的知識來計算圓柱的體積?生:長方體的體積可以通過底面積乘高得到,我想圓柱的體積是不是也可以通過底面積乘高得到呢?
師課件展示:沿著圓柱底面扇形把圓柱切開,得到大小相等的16塊,拼成了一個近似長方體的演示過程。
我們把這相等的16塊分成32塊,64塊,或更多,那么拼成的立體圖形就
學生回答:就越接近于長方體了。
師課件展示:點擊后出現(xiàn):將圓柱細分,拼成一個更接近于長方體的演示過程。)
師:通過觀察,你知道了什么?
生可能回答:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
師課件展示:點擊后出現(xiàn):長方體的底面積等于圓柱的底面積,再點擊出現(xiàn):圓柱的體積=底面積x215;高,V=Sh。
(三)、練一練:
1、師課件出示:一根圓柱形木料,底面積為75平方厘米,長90厘米。它的體積是多少?
生:完成后小組內交流。
2、師課件出示:判斷題
一根圓柱形鋼材,底面積是50平方厘米,高是米。它的體積是多少?
師:出示下面幾種解答方案,讓學生判斷哪些是正確的。
①50x=105(立方厘米)
、诿祝210厘米,50x210=(立方厘米)
、 50平方厘米=平方米,x=(立方米)
、 50平方厘米=平方米,x=(立方米)
生:小組討論,學生匯報并說出理由。
師:點擊出現(xiàn):“√” 。
師小結:計算時既要分析條件和問題,還要注意要先統(tǒng)一計量單位。
。ㄋ模、兩個圓柱體積計算公式的比較。
師課件展示:點擊出現(xiàn)圓柱,再點擊出現(xiàn)半徑r、高h如果已知圓柱底面半徑r和高h,這樣的圓柱的體積應該怎樣計算呢?師課件展示:點擊出現(xiàn)V=πrh。師課件展示:點擊出現(xiàn)V=Sh。
師:說說這兩個體積計算公式之間有什么聯(lián)系呢?生可能回答:這兩個體積計算公式中πr就是底面積S(設計意圖說明:比較兩個圓柱體積計算公式,明確兩個體積公式之間的關系。)
小結:題目給了圓的`半徑,我們先算出圓柱的底面積,再算它的體積,如果題目給的是圓的直徑呢?
生可能回答:我們仍然先算出圓柱的底面積,再算它的體積。
。ㄎ澹、拓展訓練練習一:填表
師課件展示,生小組交流完成。練習二:計算圓柱的體積師課件展示,生小組交流完成。
練習三:師課件展示:根據(jù)圓柱的體積公式計算一個圓柱的體積是80cm3,底面積是16cm3。它的高是多少cm?
生小組交流完成。
(六)、小結
通過今天的學習,我們懂得,可以把圓柱轉化為一個近似的長方體來計算它的體積。知道了圓柱的體積可以用V=Sh或者V=πrh來計算。
(七)、板書設計圓柱的體積
圓柱的體積=底面積x高=Sh=πrh
三、課后系統(tǒng)部分——教學后記
圓柱的體積是幾何知識的綜合運用,它是在學生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計算公式推導過程的基礎上進行教學的。由于圓柱是一種含有曲面的幾何體,這給體積的認識和計算增加了難度。為了降低學習難度,讓學生更好地理解和掌握圓柱體積的計算方法,為后面學習圓錐體積打下堅實的基礎,因此在本節(jié)課的教學設計上十分注重從已知知識和方法入手,讓學生經(jīng)歷“轉化圖形、建立聯(lián)系、推導公式”的探究過程,通過一系列的數(shù)學活動,培養(yǎng)學生探究數(shù)學知識的能力和方法,同時在學習活動中體驗學習的樂趣。
《圓柱的體積》數(shù)學教學設計 篇7
一、教學內容
教材第25頁 例5、例6
二、學習目標
1、知識目標:理解、掌握圓柱的體積公式的推導過程,能利用圓柱的體積計算公式解決問題。
2、能力目標:經(jīng)歷圓柱的體積公式的推導過程,學會運用轉化的思想解決一些具體問題。
3、情感目標:感受圓柱的體積的計算與生活密不可分,激發(fā)學生學習數(shù)學的熱情。
三、教學重難點
1、重點:理解、掌握圓柱的體積公式的推導過程。
2、難點:圓柱體積公式的推導過程。
四、教學準備
多媒體課件
五、教學過程
<一>創(chuàng)設情境、生成問題
師:前面我們學過長方體和正方體的體積計算方法,你還記得是怎么計算的嗎?(課件出示一個長方體和一個正方體)
生答:長方體的體積用長X寬X高,正方體的'體積是用棱長X棱長X棱長,或者用一個公用的底面積X高來計算
師:這位同學回答的非常好,今天這節(jié)課我們就一起來研究圓柱體的體積計算方法。
板書:圓柱的體積(課件)
<二>探索交流、解決問題
1、猜想
師:長方體和正方體體積的大小取決于三條棱的長度,或者說取決于底面積和高,那么你認為圓柱的體積取決于什么呢?
。ㄉ杂刹孪,并討論交流)師適當板書記錄
剛才那幾個同學都很有想法,覺得圓柱的體積的大小可能和XXXX有關系,有人這樣說過,偉大的猜想必須要經(jīng)過驗證才能得到證明,否則的話只能是空想,接下來通過兩組圖片大家進行驗證一下
。ㄕn件出示兩組圖片,第一組兩個圓柱等底不等高,第二組兩個圓柱等高不等底)
師:第一組圖片中的兩個圓柱有什么特征?
生:底面一樣,但是高度卻不一樣,體積也不一樣
師:第二組圖片中的兩個圓柱有什么特征?
生:這組圖片中的兩個圓柱高度一樣,但是底面卻不一樣,體積也不一樣
師:那么通過剛才兩個同學的回答,你能得出什么結論呢?
小結:圓柱的體積的大小取決于圓柱底面的大小和高度的大小
師:那么你能大膽的猜想一下圓柱的體積是如何計算的嗎?
生猜想......
師:我們的猜想對不對,還是要用實驗去證明
2、推導圓柱體積計算公式
師:怎么樣進行實驗呢?結合我們以往學習幾何圖形的經(jīng)驗,小組討論交流,說說自己的想法
生:我們是把圓柱的底面分成若干偶數(shù)分,然后用刀割開,在進行拼組,變成一個長方體,這樣通過轉化,圓柱就變成了一個近似的長方體,分的份數(shù)越多,越接近一個長方體,然后通過求長方體的體積去求圓柱的體積
師:用心思考的同學總能找到解決問題的辦法,那么接下來同學們就利用手里的學習用具完成這個驗證實驗并完成老師給你們的實踐作業(yè)紙
。ㄕn件出示作業(yè)紙)對應和公式推導
選取小組的作業(yè)紙進行展示,有其他同學進行評定
課件演示結果
小結:通過轉化的數(shù)學思想我們將圓柱的體積轉化成已經(jīng)學過的長方體的體積,圓柱的體積計算公式是底面積乘高。
另外,圓柱的底面積、直徑、半徑和周長四個數(shù)據(jù)中的任意一個和圓柱的高兩個數(shù)據(jù)就可以求出圓柱的體積。
<三>鞏固應用、內化提高
2、
3、下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的)
8cm
8cm
498ml
498ml
10cm
10cm
<四>回顧整理、反思提升
今天這節(jié)課你有什么新的收獲說出來和大家一起分享吧!
《圓柱的體積》數(shù)學教學設計 篇8
教學內容:
冀教版小學數(shù)學六年級下冊第32—34頁。
教學目標:
知識和技能:經(jīng)歷認識圓柱體積,探索圓柱體積計算公式及簡單應用的過程。
過程與方法:讓學生經(jīng)歷觀察、猜想、證明等數(shù)學活動過程。探索并掌握圓柱體積公式,能計算圓柱的體積。
情感、態(tài)度和價值觀:在探索圓柱體積的過程中,培養(yǎng)學生應用已有知識解決問題的能力,進一步體會轉化的數(shù)學思想,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和結論的確定性。
教學重點:
探索并掌握圓柱體積公式,能計算圓柱的體積。
教學難點:
圓柱體積公式的推導過程及簡單應用。
教具準備:
兩個不易直觀比較體積大小的圓柱桶,探索體積的課件
教學時數(shù):
一課時
教學過程:
一、情景導入
1.出示“亮亮和爺爺過生日”的情境圖。學生觀察,說說發(fā)現(xiàn)了什么?想到了哪些問題?2.學生觀察思考后回答。
生:亮亮和爺爺?shù)纳盏案舛际菆A柱形的。
生:生日蛋糕大,就是蛋糕的體積大;生日蛋糕小,就是蛋糕的體積小。
3.出示兩個圓柱體,學生觀察、猜想。
師:同學們這兩個圓柱體,哪個大些?(說出理由)生:我認為第一個大一些。生:我認為第二個大些。生:要是能算出體積就好了?
師:是啊,有時我們觀察到的大小不一定準確,我們還是通過計算比較大小更準確些。今天我們就一起學習“圓柱的體積” 3.揭示并板書課題:圓柱的體積
(設計意圖:創(chuàng)設情境導入激趣,通過觀察讓學生對圓柱體體積有了初步的認識,充分調動學生的求知欲,同時又為學生探索新知做好準備。)
二、合作探究
。ㄒ唬┮龑Щ貞
1.設疑:看到課題你能想到哪些有關數(shù)學知識?你還想知道什么數(shù)學知識?2.學生回憶后回答。
3.教師結合學生的回答適當?shù)陌鍟。板書:長方體的體積=底面積x高生:我還想知道怎樣求圓柱體積的大小?
師:同學們知道的可真不少,對以前學過的知識掌握得很扎實,那么怎樣才能知道一個物體的體積有多大呢?現(xiàn)在我們就共同研究圓柱體積的計算方法。
。ㄔO計意圖:通過創(chuàng)設問題情境,可以引導學生運用已有的`生活經(jīng)驗和就知識積極思考,形成任務驅動的探究氛圍。
(二)推導、論證“圓柱的體積” 1.引發(fā)思考猜想
師:我們以前學過學過了長方體和正方體的體積,我們知道了物體所占空間的大小叫做物體的體積。那么怎樣計算圓柱的體積呢?請同學們猜想一下。
生:我們是不是象學過的長方體和正方體體積一樣用“底面積x高”呢?
師:同學猜想的很有道理。
師:再回顧我們以前探索圓面積公式時是把圓轉化成哪種圖形來計算的?(課件演示:圓面積公式的推導)生:我們可以按照這樣的方法把圓柱體轉化為已經(jīng)學過的長方體或正方體推導出圓柱體體積。 2.師生合作推導驗證
教師用課件演示,學生觀察思考。
師:把圓柱體平均分成16份、32份??同樣可以拼成一個近似長方體。請同學們觀察兩次等份的異同。學生觀察思考后回答
生:相同點是都可以拼成一個近似的長方體。
生:不同點是等分的份數(shù)不同,等分的份數(shù)越多,拼成的圖形就越接近一個近似的長方體。
3.同學們觀察很仔細,請你們想想,拼成的近似長方體和圓柱體有什么關系?你發(fā)現(xiàn)了什么?
4.小組同學討論后匯報結果,同時板書。
生:(1)把圓柱拼成長方體后,形狀變了,體積不變。
板書:長方體的體積=圓柱的體積
。2)拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。
師:(1)配合回答,演示課件,閃爍相應的部位,并板書相應的內容。
板書:圓柱的體積=底面積x高,用字母表示V=Sh
師:讓學生書空,再次讓學生鞏固圓柱體積公式的推導過程。(設計意圖:再探究圓柱體積計算的過程中,進一步體會轉化的數(shù)學思想,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學結論的穩(wěn)定性。
三、出示例題:一根圓柱形的木料,底面積是320平方厘米,高是米。這根木料的體積是多少立方厘米?
1.學生讀題試算。
2.集體訂正。
四、應用與拓展
1.完成教材第34“試一試”。(1)學生仔細看圖,明確題意。
。2)學生自主完成后,全班交流。
五、課堂總結
本節(jié)課你有什么收獲?還有什么疑問?附:板書
圓柱的體積
長方體的體積=底面積x高
圓柱的體積=底面積x高
教學反思:
本節(jié)課的教學體現(xiàn)了:
一、利用遷移規(guī)律引入新課,為學生創(chuàng)設良好的學習情境;
二、遵循學生的認知規(guī)律,引導學生觀察、思考、猜想、論證,調動學生多種感觀參與學習;
三、正確處理兩主關系,充分發(fā)揮學生的主體作用,注意學生學習的參與過程及知識的獲取過程,學生積極性高,學習效果好,達到預期效果。不足之處學生討論時間控制太少,課后作業(yè)個別學生還是對公式不會靈活應用。
《圓柱的體積》數(shù)學教學設計 篇9
教學內容:
P19-20頁例5、例6及補充例題,完成做一做及練習三第1~4題。
教學目標:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉化的數(shù)學思想和方法,解決實際問題的能力
3、滲透轉化思想,培養(yǎng)學生的自主探索意識。
教學重點:
掌握圓柱體積的計算公式。
教學難點:
圓柱體積的計算公式的推導。
教學過程:
一、復習
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長寬高,長方體和正方體體積的統(tǒng)一公式底面積高,即長方體的體積=底面積高)
2、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。(刪掉)
3、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。
師小結:圓的面積公式的推導是利用轉化的思想把一個曲面圖形轉化成以前學的長方形,今天我們學習圓柱體體積公式的推導也要運用轉化的思想同學們猜猜會轉化成什么圖形?
二、新課
1、圓柱體積計算公式的推導。
(1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形課件演示)
(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
反復播放這個過程,引導學生觀察思考,討論:在變化的.過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關系?
學生說演示過程,總結推倒公式。
(3)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)
《圓柱的體積》數(shù)學教學設計 篇10
教學目標
1.理解圓柱體體積公式的推導過程,掌握計算公式.
2.會運用公式計算圓柱的體積.
教學重點
圓柱體體積的計算.
教學難點
理解圓柱體體積公式的推導過程.
教學過程
一、復習準備
。ㄒ唬┙處熖釂
1.什么叫體積?怎樣求長方體的體積?
2.圓的面積公式是什么?
3.圓的面積公式是怎樣推導的?
。ǘ┱勗拰
同學們,我們在研究圓面積公式的推導時,是把它轉化成我們學過的長方形知識的來解決的.那圓柱的體積怎樣計算呢?能不能也把它轉化成我們學過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題.(板書:圓柱的體積)
二、新授教學
。ㄒ唬┙虒W圓柱體的體積公式.(演示動畫圓柱體的體積1)
1.教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體.
2.學生利用學具操作.
3.啟發(fā)學生思考、討論:
。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
。2)通過剛才的實驗你發(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了.
②拼成的近似的長方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化.
、劢崎L方體的高就是圓柱的高,沒有變化.
4.學生根據(jù)圓的面積公式推導過程,進行猜想.
(1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
(3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5.啟發(fā)學生說出通過以上的觀察,發(fā)現(xiàn)了什么?
。1)平均分的.份數(shù)越多,拼起來的形體越近似于長方體.
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體.
6.推導圓柱的體積公式
(1)學生分組討論:圓柱體的體積怎樣計算?
(2)學生匯報討論結果,并說明理由.
因為長方體的體積等于底面積乘高.(板書:長方體的體積=底面積高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高.(板書:圓柱的體積=底面積高)
。3)用字母表示圓柱的體積公式.(板書:V=Sh)
。ǘ┙虒W例4.
1.出示例4
例4.一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50210=10500(立方厘米)
答:它的體積是10500立方厘米.
2.反饋練習
(1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
。2)一個圓柱形罐頭盒的內底面半徑是5厘米,高15厘米,它的容積是多少?
。ㄈ┙虒W例5.
1.出示例5
例5.一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
。3.14
=3.14100
。314(平方厘米)
水桶的容積:
31425
。7850(立方厘米)
=7.8(立方分米)
答:這個水桶的容積大約是7.8立方分米.
三、課堂小結
通過本節(jié)課的學習,你有什么收獲?
1.圓柱體體積公式的推導方法.
2.公式的應用.
《圓柱的體積》數(shù)學教學設計 篇11
教學目標:
1、使學生掌握圓柱體積公式,會用公式計算圓柱體積,能解決一些實際問題。
2、讓學生經(jīng)歷觀察、操作、討論等數(shù)學活動過程,理解圓柱體積公式的推導過程,引導學生探討問題,體驗轉化和極限的思想。
3、在圖形的變換中,培養(yǎng)學生的遷移能力、邏輯思維能力,并進一步發(fā)展其空間觀念,領悟學習數(shù)學的方法,激發(fā)學生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。
教學重點:
圓柱體積計算公式的推導過程并能正確應用。
教學難點:
借助教具演示,弄清圓柱與長方體的關系。
教具準備:
多媒體課件、長方體、圓柱形容器若干個;學生準備推導圓柱體積計算公式用學具。
教學設想:
《 圓柱的體積 》是學生在有了圓柱、圓和長方體的相關的基礎上進行教學的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導過程,會計算圓柱的體積,在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、課件演示、實踐操作,從經(jīng)歷和體驗中思考,培養(yǎng)學生科學的思維方法;貼近學生生活實際,創(chuàng)設情境,解決問題,體現(xiàn)數(shù)學知識從生活中來到生活去的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探索。
教學過程:
一、創(chuàng)設情境,激疑引入
水是生命之源!節(jié)約用水是我們每個公民應盡的義務。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
。2)討論后匯報
生1:用量筒或量杯直接量出它的體積;
生2:用秤稱出水的重量,然后進一步知道體積;
生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計算。
師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長方體容器中
生2:我們學過了長方體的體積計算,只要量出長、寬、高就行
[設計意圖:通過本環(huán)節(jié),給學生創(chuàng)設一個生活中的情境,提出問題,學習身邊的數(shù)學,激起學生的學習興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識聯(lián)系為所學內容作了鋪墊的準備]
2、創(chuàng)設問題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機圓柱形大前輪的體積,能用同學們想出來的.辦法嗎?
[設計意圖:進一步從實際需要提出問題,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]
師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經(jīng)歷體驗,探究新知
1、回顧舊知,幫助遷移
。1)教師首先提出具體問題:圓柱體和我們以前學過的哪些幾何圖形有聯(lián)系?
生1:圓柱的上下兩個底面是圓形
生2:側面展開是長方形
生3:說明圓柱和我們學過的圓和長方形有聯(lián)系
師:請同學們想想圓柱的體積與什么有關?
生1:可能與它的大小有關
生2:不是吧,應該與它的高有關
[設計意圖:溫故而知新,既復習了舊知識又引出了新知識,學生在不知不覺中就學到了新知。]
(2)請大家回憶一下:在學習圓的面積時,我們是怎樣將圓轉化成已學過的圖形,來推導出圓面積公式的。
配合學生回答演示課件。
[設計意圖:通過想象,進一步發(fā)展學生的空間觀念,由形到體;同時使學生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導過程的再現(xiàn),為實現(xiàn)經(jīng)驗和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導學生說出圓柱可能轉化成我們學過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉化近似的長方體了。)
。2)學生以小組為單位操作體驗。
把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉化成近似的長方體了。使學生進一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份)
[設計意圖:教師提出問題,學生帶著問題大膽猜測、動手體驗。這樣學生在自主探索、體驗、領悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]
(3)學生小組匯報交流
近似的長方體的體積等于圓柱的體積, 近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據(jù)學生匯報,用教具進行演示。
。4)概括板書:根據(jù)圓柱與近似長方體的關系,推導公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
[設計意圖:首先通過學生的聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉化的雛形,然后再通過實踐操作,動畫演示,驗證了學生的發(fā)現(xiàn),從學生的認識和發(fā)現(xiàn)中,圍繞著圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識 公式)]
三、實踐應用,鞏固新知。
1、火眼金睛判對錯。
(1)長方體、正方體、圓柱的體積都等于底面積乘高。( )
。2)圓柱的高越大,圓柱的體積就越大。( )
。3)如果兩個圓柱的體積相等,則它們一定等底等高。( )
[設計意圖:加深對剛學知識的分析和理解。]
2、計算下面各圓柱的體積。
。1)底面積是30平方厘米,高4厘米。
。2)底面周長是12。56米,高是2米。
。3)底面半徑是2厘米,高10厘米。
[設計意圖:讓學生靈活運用公式進行計算。]
3、實踐練習。
提供在創(chuàng)設情景中圓柱形接水容器的內底面直徑和高。
這個圓柱形容器,內底面直徑是10厘米,高12厘米,水面高度10厘米。
[設計意圖:讓學生領悟數(shù)學與現(xiàn)實生活的聯(lián)系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個同樣大小的圓柱形花壇;▔牡酌鎯戎睆綖4米,高為0、6米,如果里面填土的高度是0、4米,這四個花壇共需要填土多少立方米?
[設計意圖:使學生進一步感受到生活中處處有數(shù)學,同時培養(yǎng)學生的環(huán)保意識。]
四、反思回顧
師:通過本節(jié)課的學習,你有什么收獲嗎?
[設計意圖:讓不同層次的學生談學習收獲,可使每個學生都體驗到成功的喜悅。這樣,學生的收獲不僅只有知識,還包括能力、方法、情感等,學生體驗到學習的樂趣,增強了學好數(shù)學的信心。]
板書設計:
圓柱的體積
根據(jù)圓柱與近似長方體的關系,推導公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
教學反思:
本節(jié)的教學從生活的實際創(chuàng)設情境,提出問題,讓學生學習有用的數(shù)學,提高了學生運用數(shù)學知識解決身邊問題的能力,從學數(shù)學的角度,注意了數(shù)學知識的特點。運用已有的知識(長方體體積的計算)經(jīng)驗(圓面積公式的推導)解決新的問題,在新舊知識的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機的聯(lián)系到一起,使學生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學生充分經(jīng)歷了知識的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強了實踐與知識的聯(lián)系,并創(chuàng)造性的補充了一些與學生身邊實際生活相聯(lián)系的練習題,提高了學生的學習興趣。
《圓柱的體積》數(shù)學教學設計 篇12
一、教學目標
(一)知識與技能
用已學的圓柱體積知識解決生活中的實際問題,并滲透轉化思想。
(二)過程與方法
經(jīng)歷探究不規(guī)則物體體積的轉化、測量和計算過程,讓學生在動手操作中初步建立“轉化”的數(shù)學思想,體驗“等積變形”的轉化過程。
。ㄈ┣楦袘B(tài)度和價值觀
通過實踐,讓學生在合作中建立協(xié)作精神,并增強學生“用數(shù)學”的意識。
二、教學重難點
教學重點:利用所學知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。
教學難點:轉化前后的溝通。
三、教學準備
每組一個礦泉水瓶(課前統(tǒng)一搜集農夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學過程
。ㄒ唬⿵土暸f知,做好鋪墊
1、板書:圓柱的體積。
問:圓柱的體積怎么計算?體積和容積有什么區(qū)別?
2、揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實際問題。(完整板書:用圓柱的體積解決問題)
【設計意圖】通過復習圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學習新知做好知識上的準備。
。ǘ┨剿鲗嵺`,體驗轉化過程
1、創(chuàng)設情境,提出問題。
每個小組桌子上有一個沒有裝滿水的'礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學問題嗎?(隨機板書)
預設1:瓶子還有多少水?(剩下多少水?)
預設2:喝了多少水?(也就是瓶子的空氣部分。)
預設3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)
2、你覺得你能輕松解決什么問題?
。1)預設1:瓶子有多少水?(怎么解決?)
學生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結:知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準備好直尺,或許等會兒有用哦!
(2)預設2:喝了多少水?
學生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。
教師:當物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?
教師相機引導:能否將空氣部分變成一個規(guī)則的立體圖形呢?
學生能說出方法更好,不能說出則引導:我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導學生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結:這個方法不錯,我們利用水的流動性成功地將不規(guī)則的空氣部分轉化成了一個圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個問題還難得到你嗎?
《圓柱的體積》數(shù)學教學設計 篇13
教學內容:
北師大版小學數(shù)學教材六年級下冊第8—10頁。
教學目標:
1、結合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,能夠運用公式正確的計算圓柱的體積和容積。
2、初步學會用轉化的思想和方法,提高解決實際問題的能力。
教學重點、難點:
重點:掌握圓柱體積的計算公式。
難點:圓柱體積計算公式的推導。
教學過程:
一、情境導入
1、出示教學情境:怎樣用學過的知識測量出老師的水杯里裝了多少毫升的水?
想一想:杯子里的水是什么形狀?準備用什么方法來計算水的體積?
讓學生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出長方體的長、寬和水的高,就能求出水的體積。
2、出示第二情境:圓柱形的木柱子、壓路機的車輪這樣的圓柱用這種方法還行嗎?怎么辦?
怎樣計算圓柱的體積?這就是我們本節(jié)課要研究的問題。(板書課題:計算圓柱的體積)
二、探究新知:
1、大膽猜想:你覺得圓柱體積的大小和什么有關?
學生猜想,教師出示相應的課件演示,讓學生觀察,體會圓柱的體積和它的底面積和高,有關系,有怎樣的關系。
2、圓柱的體積可能等于什么?(說說猜想依據(jù))
長方體,正方體的體積都等于“底面積x高”猜想圓柱的體積也可能等于“底面積x高”。
。ㄓ谜n件展示切拼過程,讓學生觀察等分的份數(shù)越多越接近長方體,彌補直觀操作等分的份數(shù)太多不易操作的缺陷。)
學生討論交流:
。1)把圓柱拼成長方體后,什么變了,什么沒變?
。2)拼成的長方體與圓柱之間有什么聯(lián)系?
。3)通過觀察得到什么結論?
得到:圓柱的`體積=底面積x高 V=Sh
三、拓展交流
要求圓柱的體積只要找到它的底面積和高就可以,分別討論知道半徑、直徑、地面周長,該怎么求出圓柱的體積,總結出公式。
四、練習設計:
1、想一想,填一填:
把圓柱體切割拼成近似(),它們的()相等。長方體的高就是圓柱體的( ),長方體的底面積就是圓柱體的( ),因為長方體的體積=(),所以圓柱體的體積=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圓柱體體積用字母表示為( )
2、判斷正誤,對的畫“√”,錯誤的畫“x”。
(1)圓柱體的底面積越大,它的體積越大。x
(2)圓柱體的高越長,它的體積越大。x
(3)圓柱體的體積與長方體的體積相等。x
(4)圓柱體的底面直徑和高可以相等!
3、分別計算下列各圖形的體積,再說說這幾個圖形體積計算方法之間的聯(lián)系。
4x3x8
6x6x6
3.14x(5÷2)2x8
。96(cm3)
。216(cm3)
。157(cm3)
4、計算下面各圓柱的體積。
60x4
3.14x12x5
3.14x(6÷2)2x10
。240(cm3)
。15.7(cm3)
。282.6(dm3)
5、這個杯子能否裝下3000mL的牛奶?
3.14x(14÷2)2x20
=3077.2(cm3)
。3077.2(mL)
3077.2mL>3000mL
答:這個杯子能裝下3000mL的牛奶。
五、課堂小結:談談這節(jié)課你有哪些收獲?
【《圓柱的體積》數(shù)學教學設計】相關文章:
《圓柱的體積》教學設計08-31
《圓柱的體積》教學設計(15篇)06-10
《圓柱的體積》教學設計15篇06-30
《圓柱的體積》教學設計(精選10篇)06-28
《圓柱的體積》的教學設計(通用11篇)06-23
《圓柱的體積》教學設計集錦15篇06-03
《用圓柱的體積解決問題》教學設計范文06-24
《圓錐的體積》教學設計04-17