圓柱體積教學(xué)設(shè)計
作為一名人民教師,總歸要編寫教學(xué)設(shè)計,借助教學(xué)設(shè)計可以更好地組織教學(xué)活動。那么問題來了,教學(xué)設(shè)計應(yīng)該怎么寫?下面是小編為大家收集的圓柱體積教學(xué)設(shè)計,僅供參考,大家一起來看看吧。
圓柱體積教學(xué)設(shè)計1
一、教學(xué)內(nèi)容
教材第25頁 例5、例6
二、學(xué)習(xí)目標(biāo)
1、知識目標(biāo):理解、掌握圓柱的體積公式的推導(dǎo)過程,能利用圓柱的體積計算公式解決問題。
2、能力目標(biāo):經(jīng)歷圓柱的體積公式的推導(dǎo)過程,學(xué)會運用轉(zhuǎn)化的思想解決一些具體問題。
3、情感目標(biāo):感受圓柱的體積的計算與生活密不可分,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
三、教學(xué)重難點
1、重點:理解、掌握圓柱的體積公式的推導(dǎo)過程。
2、難點:圓柱體積公式的推導(dǎo)過程。
四、教學(xué)準(zhǔn)備
多媒體課件
五、教學(xué)過程
<一>創(chuàng)設(shè)情境、生成問題
師:前面我們學(xué)過長方體和正方體的體積計算方法,你還記得是怎么計算的嗎?(課件出示一個長方體和一個正方體)
生答:長方體的體積用長X寬X高,正方體的體積是用棱長X棱長X棱長,或者用一個公用的底面積X高來計算
師:這位同學(xué)回答的非常好,今天這節(jié)課我們就一起來研究圓柱體的體積計算方法。
板書:圓柱的體積(課件)
<二>探索交流、解決問題
1、猜想
師:長方體和正方體體積的大小取決于三條棱的長度,或者說取決于底面積和高,那么你認(rèn)為圓柱的體積取決于什么呢?
。ㄉ杂刹孪,并討論交流)師適當(dāng)板書記錄
剛才那幾個同學(xué)都很有想法,覺得圓柱的體積的大小可能和XXXX有關(guān)系,有人這樣說過,偉大的猜想必須要經(jīng)過驗證才能得到證明,否則的話只能是空想,接下來通過兩組圖片大家進(jìn)行驗證一下
。ㄕn件出示兩組圖片,第一組兩個圓柱等底不等高,第二組兩個圓柱等高不等底)
師:第一組圖片中的兩個圓柱有什么特征?
生:底面一樣,但是高度卻不一樣,體積也不一樣
師:第二組圖片中的兩個圓柱有什么特征?
生:這組圖片中的兩個圓柱高度一樣,但是底面卻不一樣,體積也不一樣
師:那么通過剛才兩個同學(xué)的回答,你能得出什么結(jié)論呢?
小結(jié):圓柱的體積的大小取決于圓柱底面的大小和高度的大小
師:那么你能大膽的猜想一下圓柱的體積是如何計算的嗎?
生猜想......
師:我們的猜想對不對,還是要用實驗去證明
2、推導(dǎo)圓柱體積計算公式
師:怎么樣進(jìn)行實驗?zāi)?結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗,小組討論交流,說說自己的想法
生:我們是把圓柱的底面分成若干偶數(shù)分,然后用刀割開,在進(jìn)行拼組,變成一個長方體,這樣通過轉(zhuǎn)化,圓柱就變成了一個近似的長方體,分的份數(shù)越多,越接近一個長方體,然后通過求長方體的體積去求圓柱的體積
師:用心思考的同學(xué)總能找到解決問題的辦法,那么接下來同學(xué)們就利用手里的學(xué)習(xí)用具完成這個驗證實驗并完成老師給你們的實踐作業(yè)紙
。ㄕn件出示作業(yè)紙)對應(yīng)和公式推導(dǎo)
選取小組的作業(yè)紙進(jìn)行展示,有其他同學(xué)進(jìn)行評定
課件演示結(jié)果
小結(jié):通過轉(zhuǎn)化的數(shù)學(xué)思想我們將圓柱的體積轉(zhuǎn)化成已經(jīng)學(xué)過的長方體的體積,圓柱的體積計算公式是底面積乘高。
另外,圓柱的底面積、直徑、半徑和周長四個數(shù)據(jù)中的任意一個和圓柱的高兩個數(shù)據(jù)就可以求出圓柱的體積。
<三>鞏固應(yīng)用、內(nèi)化提高
2、
3、下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的)
8cm
8cm
498ml
498ml
10cm
10cm
<四>回顧整理、反思提升
今天這節(jié)課你有什么新的收獲說出來和大家一起分享吧!
圓柱體積教學(xué)設(shè)計2
教材版本
《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書》 (人教版) 六年級數(shù)學(xué)下冊。
課程標(biāo)準(zhǔn)摘錄
1、結(jié)合具體情境,探索并掌握長方體、正方體、圓柱體的體積和表面積以及圓錐體體積的計算方法。
2、探索某些實物體積的測量方法。
學(xué)情與教材分析
“圓柱的體積” 是人教版六年級下冊“圓柱和圓錐”這一單元的第四節(jié)的內(nèi)容,在學(xué)習(xí)本節(jié)內(nèi)容之前,學(xué)生已經(jīng)認(rèn)識了圓柱,學(xué)習(xí)了體積,經(jīng)歷了長、正方體的體積推導(dǎo)過程以及圓面積公式的推導(dǎo)過程。在推導(dǎo)圓柱的體積公式時,把圓柱體轉(zhuǎn)化成長方體,高并沒有變,只是把底面的圓形轉(zhuǎn)化成長方形,它的轉(zhuǎn)化過程實際上和圓轉(zhuǎn)化成長方形求面積的方法相同,學(xué)生已具備有學(xué)習(xí)本課的技能。教學(xué)中不僅要讓學(xué)生知道圓柱體積計算公式是什么,而且要讓學(xué)生主動探索、經(jīng)歷圓柱體體積計算公式的推導(dǎo)過程,從而體驗探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗。
學(xué)習(xí)目標(biāo)
1、經(jīng)歷探究和推導(dǎo)圓柱的體積計算公式的過程,理解并掌握圓柱體積計算方法,并能正確計算圓柱體積,達(dá)標(biāo)率100%。
2、能運用圓柱的體積計算方法,解決有關(guān)的實際問題,發(fā)展學(xué)生的實踐能力,達(dá)標(biāo)率95%。
3、能積極參與圓柱體積計算公式推導(dǎo)活動,能有條理地、清晰地闡述活動過程,發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力,達(dá)標(biāo)率95%。
4、激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗成功的快樂,達(dá)標(biāo)率100%。
5、培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想,達(dá)標(biāo)率95%。
學(xué)習(xí)重點
圓柱的體積計算方法
學(xué)習(xí)難點
圓柱體積計算公式的推導(dǎo)。
教具、學(xué)具準(zhǔn)備:
1、師:圓柱體積計算公式推導(dǎo)教具,課件。
2、生:削好的圓柱體蘿卜或土豆、或圓柱體橡皮泥,小刀。
教學(xué)設(shè)想
本節(jié)課第一個環(huán)節(jié)激活舊知、引出新知,采用復(fù)習(xí)長方體、正方體的體積公式,圓面積計算公式的推導(dǎo)過程,從轉(zhuǎn)化的思想、方法上為推導(dǎo)圓柱的體積公式做一些鋪墊。第二個環(huán)節(jié)自主合作、探索新知,采用了激趣設(shè)疑的方法層層深入,調(diào)動同學(xué)們學(xué)習(xí)的熱情,激發(fā)學(xué)生探究的欲望。學(xué)生積極合作交流,主動參與到圓柱體積計算公式的推導(dǎo)過程中,從而體驗探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗。然后通過例題教學(xué)加深對圓柱的體積公式的理解,體會計算公式在實際生活中的應(yīng)用,發(fā)展學(xué)生的實踐能力。第三個環(huán)節(jié)鞏固練習(xí)、拓展提高,采用了分層教學(xué)的方法,設(shè)計的練習(xí)題由易到難,這樣設(shè)計的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。通過本節(jié)課的教學(xué),學(xué)生在自主探索和合作交流過程中真正理解和掌握數(shù)學(xué)的知識與技能、特別是讓學(xué)生獲得數(shù)學(xué)的思想和方法,獲得數(shù)學(xué)活動的經(jīng)驗,同時陶冶了情操。
教法、學(xué)法
演示法、啟發(fā)引導(dǎo);實驗、合作探究、嘗試練習(xí)。
評價方案
1、通過小組合作實驗完成活動檢測目標(biāo)1、4、5的達(dá)成。
2、通過提問檢測目標(biāo)3、4、5的達(dá)成。
3、通過評價樣題檢測目標(biāo)1、2、4的達(dá)成。
評價樣題
1、
2、
教學(xué)過程
一、激活舊知,引出新知
1、計算下面物體的體積
(1)長方體的長20厘米,寬10厘米,高8厘米。
。2)正方體棱6分米
2、回憶一下圓面積的計算公式是如何推導(dǎo)出來的?
[學(xué)情預(yù)設(shè):學(xué)生可能說出通過分割、拼合的辦法變成長方形或者平行四邊形,或者三角形,或者梯形來推導(dǎo)出圓的面積。這時教師要及時總結(jié)不論是拼成哪種圖形都是把圓轉(zhuǎn)化成已學(xué)過面積計算的圖形,再根據(jù)轉(zhuǎn)化后的圖形與圓各部分之間的關(guān)系推導(dǎo)出它的面積。]
教師(結(jié)合課件演示)把一個圓平均分割,再拼合就變成了一個近似的平行四邊形,分的份數(shù)越多越接近一個長方形。長方形的長,相當(dāng)于圓周長的一半,長方形的寬相當(dāng)于圓的半徑。因為長方形的面積=長×寬,所以,用圓周長的一半×半徑就可以求出圓的面積,周長一半就等于πR,半徑是R,所以圓的面積是S=πR。
。墼O(shè)計意圖:從轉(zhuǎn)化的思想、方法上為推導(dǎo)圓柱的體積公式做一些鋪墊。]
3、什么叫體積?如何求長方體的體積?如何求正方體的體積?長方體和正方體的通用公式是什么?
。墼O(shè)計意圖:為定義圓柱體的體積,為推導(dǎo)圓柱體的體積公式做知識上的鋪墊。]
板書:長方體的體積=底面積×高.
[設(shè)計意圖:原有的基礎(chǔ)是后續(xù)學(xué)習(xí)的前提和起點,新知總是在舊知的基礎(chǔ)上生長發(fā)展的。這種承上啟下的關(guān)系決定了我們的教學(xué)必須從學(xué)生原有的認(rèn)知結(jié)構(gòu)出發(fā),找準(zhǔn)新舊知識的連接點,為新課的學(xué)習(xí)做好思想方法與知識的鋪墊。]
圓柱體也有體積,說一說什么是圓柱的體積?學(xué)生交流后匯報。
板書:圓柱體所占空間的大小叫做圓柱的體積。
師:這節(jié)課,我們就來學(xué)習(xí)圓柱的體積.(板書課題:圓柱的體積)
二、自主合作,探索新知
1.求圓柱體容器中水的體積
出示長方體容器:問,這是什么?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出長方體容器。]
問:怎么求長方體容器中水的體積呢?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出量出它所容納水的長、寬、高,就可以求出水的體積。] 問:如果換成圓柱體容器又如何求其中水的體積呢?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出,把圓柱體容器中的水倒入長方體容器,量出長方體容器所容納水的長、寬、高,就可以求出圓柱體容器中水的體積。](演示:把圓柱體容器中的水倒入長方體容器)
2.橡皮泥圓柱體的體積
(出示橡皮泥做成的圓柱體)
問:這是一個什么樣的立體圖形?
問:它是用橡皮泥做成的。你能想辦法求出它的體積嗎?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出把這個圓柱體捏成一個長方體,從而量出長方體的長、寬、高,求出這個圓柱的體積。]
3.常用圓柱的體積.
課件出示圓柱體壓路機(jī)的滾筒的圖片。
問:壓路機(jī)的滾筒是一個很大的的圓柱體,你又如何求出它的體積呢?
。墼O(shè)計意圖:用圓柱體容器所盛的沒有形狀的水到可以變形的圓柱形橡皮泥,這些都可以轉(zhuǎn)化的辦法轉(zhuǎn)化為長方體來求出體積,這一過程就是要逐步滲透把圓柱體轉(zhuǎn)化為長方體的方法和思想,這樣從思想上、方法上給學(xué)生一個思維的臺階。當(dāng)出示圓柱體壓路機(jī)的滾筒圖片后,由于前面的物體是可以變形的,而壓路機(jī)的滾筒是不可以變形的,學(xué)生想不出解決的辦法,學(xué)生處于憤悱狀態(tài),對學(xué)生來說解決求壓路機(jī)的滾筒體積具有很強(qiáng)的挑戰(zhàn)性,調(diào)動了學(xué)生學(xué)習(xí)的積極性。這樣設(shè)計,為后面同學(xué)們操作、討論推導(dǎo)圓柱的體積從思想方法上作了進(jìn)一步的鋪墊,并通過構(gòu)造認(rèn)知沖突,層層深入,調(diào)動同學(xué)們學(xué)習(xí)的熱情,激發(fā)學(xué)生探求的欲望。這樣,對學(xué)生思想方法的鋪墊也已水到渠成。]
小結(jié):看來我們以上的方法求圓柱的體積有它的局限性,所以必須探究求圓柱體積的一般規(guī)律。
4.探究規(guī)律
問:圓我們可以通過分割、拼合轉(zhuǎn)化成已學(xué)過的長方形面積計算公式的圖形推導(dǎo)出圓的面積,圓柱體能不能也轉(zhuǎn)化成已學(xué)過體積的圖形來求出它的體積呢?下面請四人小組討論,圍繞下面幾個問題進(jìn)行討論、操作:
課件出示操作討論提綱:
。1)圓柱體可以轉(zhuǎn)化為什么樣的立體圖形?
(2)轉(zhuǎn)化后的立體圖形體積與圓柱的體積大小是否有變化?
(3)轉(zhuǎn)化后的形體與與原來圓柱體各部分間的對應(yīng)關(guān)系,推導(dǎo)出圓柱的體積。
學(xué)生討論,教師參與小組討論、點撥、操作。
問:下面哪個小組來先進(jìn)行匯報。
各組派代表邊匯報邊演示。
。蹖W(xué)情預(yù)設(shè):學(xué)生可能會說圓柱體可以轉(zhuǎn)化為長方體,轉(zhuǎn)化后的長方體不是標(biāo)準(zhǔn)的長方體,只有把圓柱分割的份數(shù)多一些,才可以拼成一個標(biāo)準(zhǔn)的長方體。因為長方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長方體的體積,也就相當(dāng)于求出了圓柱體的體積。長方體的體積等于圓柱體的體積,長方體的底面積等于圓柱的底面積,長方體的高相當(dāng)于圓柱體的高。因為長方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。]
問:誰還有補(bǔ)充?(學(xué)生補(bǔ)充講解)
教師拿兩個相同的圓柱體體積演示模型演示,邊演示邊講解。
師:同學(xué)們看,老師這里有兩個圓柱體,它們的底相同,高也完全相同,這是兩個完全相同的圓柱體。我把其中的一個沿著它的底面直徑剪開,兩等分、四等分、八等分、十六等分,還可以繼續(xù)分割,通過分割、拼合,把圓柱體轉(zhuǎn)化成近似的長方體,如果我把它分割的份數(shù)越多,拼成的圖形就越接近長方體。因為長方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長方體的體積,也就相當(dāng)于求出了圓柱體的體積。
結(jié)合課件演示講解。
師:長方體的體積等于圓柱體的體積,長方體的底面積等于圓柱的底面積,長方體的高相當(dāng)于圓柱體的高。因為長方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。
師:如果圓柱的體積用V來表示,底面積用S表示,高用h來表示。如何表示圓柱的體積計算公式呢?(板書:V=Sh)
〔設(shè)計意圖:學(xué)生合作交流,自主探索、經(jīng)歷圓柱體體積計算公式的推導(dǎo)過程,理解和掌握了計算方法,加深了印象,從而體驗探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗。達(dá)成目標(biāo)1、3、4、5.〕
5、實際應(yīng)用
(1)、師:給你圓柱的底面積和高,你會求圓柱的體積嗎?
例1、一根圓柱形木料,底面積75平方厘米,高是90厘米,它的體積是多少? 學(xué)生獨立完成,集體反饋矯正,說思路。
。2)、完成評價樣題
〔設(shè)計意圖:通過嘗試練習(xí)加深對圓柱的體積公式的理解,體會計算公式在實際生活中的應(yīng)用,發(fā)展學(xué)生的實踐能力。達(dá)成目標(biāo)2、4. 〕
三、鞏固練習(xí),拓展提高
1、應(yīng)用公式進(jìn)行口算:
2、
3、
。墼O(shè)計意圖:第一層次是已知底面積和高求圓柱體積的口算題,面向全體學(xué)生;第二個層次是已知底面半徑和高、底面直徑和高、底面周長和高,求體積的三種練習(xí)題,面向全體學(xué)生;第三個層次是求放入水中物體的體積就是求上升的圓柱形水的體積,面向中上層學(xué)生。這樣設(shè)計的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。在做練習(xí)過程中,一、二層次的練習(xí)板演盡量讓學(xué)困生和中等生去做,給他們展示自己的機(jī)會。并及時了解學(xué)生信息并根據(jù)學(xué)生反饋及時調(diào)整教學(xué)進(jìn)程,同時對學(xué)生存在的問題及時指導(dǎo)。達(dá)成目標(biāo)2、4. ]
四、全課總結(jié),共談收獲
通過今天的學(xué)習(xí),你有什么收獲?
。墼O(shè)計意圖:師生共同小結(jié),學(xué)會了什么?怎樣求圓柱的體積?這樣起到強(qiáng)化重點的目的。]
五、課外創(chuàng)新,拓展延伸
長方體可以這樣放(上、下面朝下),還可以這樣放(左、右面朝下),還可哪樣放(前、后面朝下)。 上、下面朝下時求出圓柱的體積=底面積×高,圓柱的體積還有沒
圓柱體積教學(xué)設(shè)計3
教學(xué)內(nèi)容:
蘇教版義務(wù)教育教科書《數(shù)學(xué)》六年級下冊第18-19頁練習(xí)三第10—16題,思考題以及動手做。
教學(xué)目標(biāo):
1.通過知識梳理、交流展示等,使學(xué)生進(jìn)一步理解圓柱表面積和體積的區(qū)別,能選擇恰當(dāng)?shù)姆椒ń鉀Q問題,在浸沒實驗中,能測算出不規(guī)則物體的體積,積累活動經(jīng)驗,提升實驗素養(yǎng)。
2.使學(xué)生經(jīng)歷觀察、操作、比較、分析、估計、類比、歸納等活動過程,培養(yǎng)學(xué)生初步的比較、分析、綜合、抽象、概括,以及簡單的判斷、推理能力,提高轉(zhuǎn)化的意識和能力,發(fā)展數(shù)學(xué)思考,增強(qiáng)空間觀念。
3.通過豐富的數(shù)學(xué)學(xué)習(xí)活動,使學(xué)生進(jìn)一步體會數(shù)學(xué)與生活的聯(lián)系,感受立體圖形學(xué)習(xí)的價值,提高數(shù)學(xué)學(xué)習(xí)的興趣和學(xué)好數(shù)學(xué)的信心。
教材分析:
圓柱和圓錐這部分內(nèi)容是學(xué)生認(rèn)識了圓,掌握了長方體和正方體的形狀特征以及表面積與體積計算方法的基礎(chǔ)上編排,是小學(xué)數(shù)學(xué)最后教學(xué)的形體知識。與長方體、正方體一樣,圓柱也是基本的幾何形體,在日常生活和生產(chǎn)勞動中經(jīng)常能夠看到。教學(xué)圓柱能夠擴(kuò)大學(xué)生認(rèn)識幾何形體的范圍,豐富對形體的認(rèn)識,有利于解決更多的實際問題。教學(xué)圓柱,也能夠豐富學(xué)生認(rèn)識幾何形體的活動經(jīng)驗,深入理解體積的意義,有利于完善認(rèn)知結(jié)構(gòu),發(fā)展空間觀念,有利于轉(zhuǎn)化能力和推理能力的進(jìn)一步提高。
學(xué)情分析:
學(xué)生在過去的學(xué)習(xí)中已經(jīng)積累了十分豐富的圖形與幾何的學(xué)習(xí)經(jīng)驗,特別是圓面積的計算方法,長方體、正方體、圓柱和圓錐的特征,長方體、正方體和圓柱的表面積和體積的計算方法等知識的探索過程,以及在這些過程中獲得的學(xué)習(xí)經(jīng)驗和方法,都為本課圓柱體積的綜合練習(xí)奠定了堅實的基礎(chǔ)。本節(jié)課,學(xué)生通過知識梳理、交流展示等活動,可以進(jìn)一步理解圓柱表面積和體積的區(qū)別,并能選擇恰當(dāng)?shù)姆椒ń鉀Q問題,發(fā)展數(shù)學(xué)思考,增強(qiáng)空間觀念,進(jìn)一步體會數(shù)學(xué)與生活的聯(lián)系,感受立體圖形學(xué)習(xí)的價值,提高數(shù)學(xué)學(xué)習(xí)的興趣和學(xué)好數(shù)學(xué)的信心。
設(shè)計理念:
從以教定學(xué),到以學(xué)定教,再到由學(xué)轉(zhuǎn)教。學(xué)習(xí)金字塔理論告訴我們:最好的學(xué)習(xí)是講給別人聽,隨著教學(xué)改革的不斷推進(jìn),我們從“以教定學(xué)”走向了“以學(xué)定教”,以學(xué)定教,呼喚教育教學(xué)回到學(xué)生的真實學(xué)情、現(xiàn)實認(rèn)知水平等方面上來,根據(jù)學(xué)生的“學(xué)”,設(shè)計教師的“教”,日益凸顯了教師是組織者、引導(dǎo)者、合作者的角色定位。葉圣陶先生說過,“教是為了不教”,賦予“以學(xué)定教”更多的生長意義,我們在不知不覺中,從“以學(xué)定教”轉(zhuǎn)向了“由學(xué)轉(zhuǎn)教”,即由學(xué)生的學(xué)轉(zhuǎn)為由學(xué)生來教的更高級的學(xué)習(xí)生態(tài)。教學(xué)方式的改變讓我們更加明確了學(xué)習(xí)的意義。
重點難點:
教學(xué)重點:用圓柱的表面積和體積公式解決實際問題。教學(xué)難點:合理分析問題并選擇恰當(dāng)算法,增強(qiáng)空間觀念。
教學(xué)準(zhǔn)備:
教師準(zhǔn)備:反饋器一套;希沃白板、課件及5塊互動大屏;投影儀;兩份合作學(xué)習(xí)(實驗)單;板貼一套等。
學(xué)生準(zhǔn)備:底面被平均分成16份的圓柱形學(xué)具16套;知識梳理圖50張;預(yù)學(xué)單50張;圓柱形容器及土豆或鐵塊若干等。
圓柱體積教學(xué)設(shè)計4
教學(xué)內(nèi)容:
人教版《九年義務(wù)教育六年制小學(xué)數(shù)學(xué)》(第十二冊)圓柱體積
教學(xué)目標(biāo):
1、結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
3、通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點:
掌握和運用圓柱體積計算公式。
教學(xué)難點:
圓柱體積計算公式的推導(dǎo)過程
教學(xué)過程
一、情景引入
1、教學(xué)開始首先出示了一個裝了半杯水的燒杯,然后拿出一個圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:會發(fā)生什么情況?由這個發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
。ㄔO(shè)計意圖:在這個環(huán)節(jié)設(shè)計觀察活動,意圖是讓學(xué)生通過觀察自主得出圓柱體積的定義,進(jìn)一步加深對體積概念的理解,并為下面的探究活動提供研究方法。)
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
。1)、先出示了兩個大小不等的圓柱體讓學(xué)生判斷哪個體積大?
。2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個水面升得高。
(3)、讓學(xué)生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積.
(4)、學(xué)生通過動手操作匯報結(jié)論:當(dāng)?shù)椎葧r,圓柱越高體積越大;當(dāng)高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
。ㄔO(shè)計意圖:本環(huán)節(jié)教學(xué)讓學(xué)生根據(jù)已有的知識解決簡單的問題,通過探究活動,引導(dǎo)學(xué)生找出決定圓柱體積的兩個因素,為學(xué)習(xí)新知識作鋪墊,同時也發(fā)展了學(xué)生的抽象概括能力。)
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
。1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計算圓柱的體積。
(2)、引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
。3)、讓學(xué)生思考:怎樣計算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
(4)、學(xué)生小組討論交流并匯報:圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
。ㄔO(shè)計意圖:通過設(shè)疑使學(xué)生認(rèn)識到學(xué)習(xí)圓柱體積公式的必要性,激發(fā)學(xué)生的探究興趣。接著通過設(shè)計猜想的過程,充分運用學(xué)生已有的知識經(jīng)驗,讓學(xué)生回憶了學(xué)習(xí)長方體體積時的實踐方法和將圓形轉(zhuǎn)化成長方形的過程,學(xué)生在如此豐富的知識經(jīng)驗基礎(chǔ)上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強(qiáng)。)
4、確定方法,探究實驗,推導(dǎo)公式。
(1)、思考你發(fā)現(xiàn)了什么?
。5)、學(xué)生匯報:實驗的結(jié)果與猜想的結(jié)果基本相同。
。6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。(課件出示)
(7)、小結(jié):要想求出一個圓柱的體積,需要知道什么條件?
。8)、學(xué)生自學(xué)第17頁例4上面的一段話:用字母表示公式。
圓柱體積教學(xué)設(shè)計5
評價樣題:
學(xué)習(xí)流程:
一、創(chuàng)設(shè)現(xiàn)實情境,增強(qiáng)探究欲望。
1、出示橡皮泥做的圓柱體:怎樣求出這個圓柱體橡皮泥的體積?你能想出幾種辦法?
如果要求(出示百家姓廣場上的圓柱形大鼎底座圖片)圓柱形大鼎底座的體積,還能用剛才那樣的方法嗎?那怎么辦?(學(xué)生試說出自己的辦法。)
看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,對嗎?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、親歷建構(gòu)過程,提高探索能力。
1、提出問題,大膽猜想
你能猜一猜圓柱的體積怎樣計算嗎?你覺得圓柱體積的大小和什么有關(guān)?
(鼓勵學(xué)生大膽猜測,說出自己的想法)
2、回顧舊知,幫助遷移
同學(xué)們都很會大膽猜想,但還要小心地論證猜想的科學(xué)性。你還記得圓面積轉(zhuǎn)化什么圖形的面積來求它的公式的嗎?
。ㄑ菔菊n件:圓轉(zhuǎn)化成長方形)
3、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學(xué)過的立體圖形來計算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?
4、小組合作,驗證猜想
下面請大家四人一組,借助手中的學(xué)具或用蘿卜和土豆做成的圓柱分組進(jìn)行探討。
。ǔ鍪竞献魈峋V)小組長做好分工,并完成記錄表。
活動記錄表
思考:
1、圓柱體可以轉(zhuǎn)化成哪種立體圖形?
2、兩種立體圖形之間有怎樣的聯(lián)系?你們發(fā)現(xiàn)了什么?得出了什么結(jié)論?
3、怎樣用簡捷的形式表示你推導(dǎo)出來的公式呢?
活動過程:
1、我們用方法,把圓柱體轉(zhuǎn)化成了體。
2、在這個轉(zhuǎn)化的過程中,變了,沒有變。
3、通過觀察比較,我們發(fā)現(xiàn):把一個圓柱體的底面分成許多相等的扇形,然后切、拼,就能得到一個近似的長方體。這個長方體的底面積等于圓柱體的(),高就是圓柱體的()。因為,長方體體積=(),所以,圓柱體的體積計算公式是v=()。
5、全班交流,展示評價。
評價交流中,借助評價樣題。同時課件演示切拼的過程,同時演示將圓柱底面等分成32份、64份……,讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。 6、根據(jù)學(xué)生的發(fā)現(xiàn)引導(dǎo)學(xué)生推導(dǎo)出:
圓柱的體積=底面積×高,
用字母表示v = sh。
7、反饋練習(xí)。
。1)要求圓柱體積,必須知道哪些條件?
。2)出示例5,學(xué)生借助圓柱體積公式自主完成,并及時訂正反饋。
圓柱的體積教學(xué)設(shè)計 相關(guān)內(nèi)容:用轉(zhuǎn)化的策略解決分?jǐn)?shù)問題“長方體和正方體的表面積”的教學(xué)實錄小學(xué)數(shù)學(xué)《倒數(shù)的認(rèn)識》教案北師大版6年級數(shù)學(xué)第11冊第1單元《圓的認(rèn)識》教案1、分?jǐn)?shù)四則混合運算《按比例分配》課后反思百分?jǐn)?shù)的意義和讀寫法反思百分?jǐn)?shù)(三)用百分?jǐn)?shù)解決問題查看更多>>小學(xué)六年級數(shù)學(xué)教案
圓柱體積教學(xué)設(shè)計6
教學(xué)內(nèi)容:教材第25、26頁例4、“試一試”、“練一練”和練習(xí)七的1、2題
教學(xué)目標(biāo):
1、進(jìn)一步深入地引導(dǎo)學(xué)生去了解圓柱,讓學(xué)生掌握圓柱的體積計算公式,并能解決實際問題。
2、培養(yǎng)學(xué)生自學(xué)能力,動手能力,觀察分析和歸納知識的能力,讓學(xué)生理解“轉(zhuǎn)化”的方法。
教學(xué)重點:理解和掌握圓柱體積的計算公式。
教學(xué)難點:圓柱體積計算公式的推導(dǎo)。
教學(xué)準(zhǔn)備:圓柱體模具。
教學(xué)過程:
預(yù)習(xí)作業(yè)檢測
學(xué)習(xí)計算圓的面積時,是怎樣得出圓面積的計算公式的?
求下面各圓的面積
R=1厘米求Sd=4分米求Sc=6.28米求S
長方體與正方體的體積都可以用什么公式來表示?
圓柱底面積/平方米高/米體積/立方米
0.61.2
0.253
合作探究
你們是怎么知道圓柱的體積=底面積×高的呢?生答預(yù)習(xí)得知。
課本上是怎么把圓柱體和長方體聯(lián)系在一起的呢?
生答,同時師相機(jī)用課件展示圓柱體和長方體相互轉(zhuǎn)化的畫面。
用切拼法把圓柱體切成16等份、32等份、64等份,由此得出結(jié)論:
○1等份越多,拼成的物體越接近于長方體。
○2長方體與圓柱體等底等高。
○3長方體體積=圓柱體體積
○4圓柱的體積=底面積×高(V=sh)。
根據(jù)剛才的結(jié)論完成下面的題目:
○1一根圓柱形鋼材,底面積是20平方厘米,高是1.5米,
它的體積是多少?生獨立完成后,師有選擇的找?guī)孜粚W(xué)生
的作業(yè)進(jìn)行投影展示,全班交流評價。
○2一個圓柱形狀的零件,底面半徑5厘米,高8厘米,這
個圓柱的體積是多少立方厘米?
引導(dǎo)學(xué)生讀題,思考。指名說出自己想的過程。生獨立解
答,展示、交流、評價。
當(dāng)堂達(dá)標(biāo)檢測
1、“練一練”第1題。
2、練習(xí)七第2題。
3、“練一練”第2題。
教學(xué)反思:
圓柱體積教學(xué)設(shè)計7
教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時讓學(xué)生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體
積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。
我讓學(xué)生觀察,先猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學(xué)生對形體的認(rèn)識。然后讓學(xué)生動手實驗:有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計算的方法。讓孩子親歷教學(xué)的驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學(xué)生想一想等積等高的時候,圓柱和圓錐有什么樣的關(guān)系?等積等底的時候,圓柱和圓錐又會有什么樣的關(guān)系?這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實際的生活問題,起到鞏固深化知識點的作用。
圓錐的體積這節(jié)課的教學(xué)具有下面的特點,一是在教學(xué)新課時,沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實驗,而是通過師生交流、問答、猜想等形式,調(diào)動學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;二是在實驗時,讓學(xué)生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗
在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實驗的學(xué)生不多,如果每個小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個學(xué)生都能真切的參與到探究中去,這樣每個學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會了知識,更重要的是培養(yǎng)了學(xué)生的能力。
教材中圓錐體積的相對練習(xí)較少,但在考試?yán)锩鎸嶋H解決問題中卻常常需要學(xué)生能夠靈活應(yīng)用,所以特別增加了一課時練習(xí)。教學(xué)中的一組填空題,對于幫助學(xué)生深入理解等底等高圓柱與圓錐的聯(lián)系很有價值。通過練習(xí),學(xué)生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或三分之四個圓柱的體積),而它們的體積相差2個圓錐的體積(或三分之二個圓柱的體積)??。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計算簡便。
教學(xué)的最后我與孩子們一起通過大量的練習(xí),引導(dǎo)總結(jié)出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計算是教學(xué)的重點和難點,也是考試中學(xué)生容易丟分的危險高發(fā)內(nèi)容,我在后面的教學(xué)中需要精講和精煉,讓學(xué)生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學(xué)直覺方為最高層次!
圓柱體積教學(xué)設(shè)計8
教材簡析:
本節(jié)內(nèi)容包括圓柱的體積計算公式的推導(dǎo),利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積,第十一冊圓柱的體積公開課。教材充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計算公式。
教學(xué)目的:
1、運用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解這個過程。
2.會用圓柱的體積計算圓柱形物體的體積和容積,運用公式解決一些簡單的問題。
3.引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實際問題的能力
4.借助實物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
教 具:圓柱的體積公式演示教具,多媒體課件
教學(xué)過程:
一、情景引入
1、出示圓柱形水杯。
。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學(xué)過的方法計算出這些水的體積嗎?
。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。(4)說一說長方體體積的計算公式。
2、創(chuàng)設(shè)問題情景。(課件顯示)
如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?
今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)(設(shè)計意圖:問題是思維的動力。通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認(rèn)知沖突,形成"任務(wù)驅(qū)動"的探究氛圍。)
二、新課教學(xué):
設(shè)疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
1.探究推導(dǎo)圓柱的體積計算公式。
課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)
討論并得出結(jié)果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計意圖:在新課教學(xué)中,先讓學(xué)生通過復(fù)習(xí)舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學(xué)生切實經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用,小學(xué)數(shù)學(xué)教案《第十一冊圓柱的體積公開課》。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力)
要用這個公式計算圓柱的體積必須知道什么條件?
填表:請同學(xué)看屏幕回答下面問題,
底面積(㎡)高(m)圓柱體積(m3)
63
0.58
52
(設(shè)計意圖:設(shè)計練習(xí)能使學(xué)生達(dá)到舉一反三的效果,從而訓(xùn)練學(xué)生的技能。這是第一層基本練習(xí),通過這道題可以使學(xué)生更好的掌握本課重點,夯實基礎(chǔ)知)
例:一個圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米.它的容積約是多少立方分米?(得數(shù)保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容積約是198立方分
。ㄔO(shè)計意圖:使學(xué)生注意解題格式,注意體積的單位為三次方)
三.鞏固反饋
1.求下面圓柱體的體積。(單位:厘米)
同學(xué)板演,其余同學(xué)在作業(yè)本上做。板演的同學(xué)講解自己的解題方法題,教師歸納學(xué)生所用的解題方法,強(qiáng)調(diào)在解題的過程中格式。(設(shè)計意圖:這是第二層變式練習(xí)。是讓學(xué)生在掌握公式的基礎(chǔ)上理解公式,學(xué)會靈活運用公式的訓(xùn)練題。通過對公式的拓展性理解,可以進(jìn)一步加深學(xué)生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學(xué)生的邏輯思維能力。)
練習(xí):(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm.已知水杯中水的體積是整個水杯體積的 2/3 計算水杯中水的體積?
(設(shè)計意圖:這是第三層發(fā)展性練習(xí),安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決引入環(huán)節(jié)中的兩個問題,切實體驗到數(shù)學(xué)就存在于自己的身邊。)
四.拓展練習(xí)
1.一個長方形的紙片長是6分米,寬4分米.用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由.(結(jié)果保留π)
2.一個底面直徑是20cm的圓柱形容體里,放進(jìn)一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、
。ㄔO(shè)計意圖:安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決引入環(huán)節(jié)中的兩個問題,使學(xué)生認(rèn)識到數(shù)學(xué)的價值體驗到數(shù)學(xué)對于了解周圍世界和解決實際問題是非常有作用的;能使學(xué)生的思維處于積極的狀態(tài)達(dá)到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。)
五.課堂小結(jié):
1.談?wù)勥@節(jié)課你有哪些收獲。
2.解題時需要注意那些方面。
(設(shè)計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用提問式小結(jié),使學(xué)生暢談收獲、發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生的語言表達(dá)能力,又能培養(yǎng)學(xué)生的歸納概括能力;同時通過對本節(jié)所學(xué)知識的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識系統(tǒng)化、完整化。)
六.布置作業(yè)
1.A冊習(xí)題2.7
2.拓展練習(xí)2題
教學(xué)反思:
本節(jié)課的教學(xué)體現(xiàn)了:一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;二、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);三、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果,不足處學(xué)生討論時間控制太少,課后作業(yè)個別學(xué)生還是對公式不會靈活應(yīng)用。
圓柱體積教學(xué)設(shè)計9
一、復(fù)習(xí)導(dǎo)入
1、回顧上節(jié)課內(nèi)容,提問:圓柱的特征,圓柱的表面積計算方法。
導(dǎo)入:這節(jié)課我們學(xué)習(xí)圓柱的體積、
2、想一想,提問:什么叫做體積?我們學(xué)過哪些物體的體積計算公式?
。ㄎ矬w所占空間的大小叫做體積、學(xué)過長方體正方體的、)
它們的計算公式是什么?可以歸納為:
長(正)方體的體積===底面積*高
3、想一想:圓面積計算公式的推導(dǎo)過程、
。ò褕A面積轉(zhuǎn)化為一個近似的長方形的面積,從而推導(dǎo)出圓面積的計算公式)
那么,能不能把圓柱轉(zhuǎn)化為我們已學(xué)過的圖形來計算它的體積?
二、新授:
敘:以上研究圓面積計算公式的方法叫做割補(bǔ)法,這種方法也適用于推導(dǎo)圓柱體積的計算公式、下面請同學(xué)們打開課本看書自學(xué)。
演示并提問:
。1)拼成的長方體的體積與圓柱的體積有什么關(guān)系?
。2)拼成的長方體的底面積與圓柱的哪部分有關(guān)系?有什么關(guān)系?
。3)拼成的長方體的高與圓柱的哪部分有關(guān)系?有什么關(guān)系?
總結(jié):長方體的體積與圓柱的體積相等,長方體的底面積與圓柱的底面積相等,長方體的高與圓柱的高相等。
因為:圓柱的體積===長方體的體積
長方體的體積===底面積*高
↓↓↓
所以:圓柱的體積===底面積*高
用字母表示為:v==sh
運用以上公式,完成練習(xí)題、
。ㄗ⒁猓簡挝灰y(tǒng)一,要認(rèn)真審題,認(rèn)真計算、)
動腦筋,思考以下幾個問題:
已知如下條件,如何求圓柱的體積?
。1)底面積s、高h(yuǎn)→→體積v==
(2)底面半徑r、高h(yuǎn)→→體積v==
。3)底面直徑d、高h(yuǎn)→→體積v==
。4)底面周長c、高h(yuǎn)→→體積v==
強(qiáng)調(diào):圓柱的體積v=sh=rh,在沒有告訴底面積和高時,要先找底面半徑和高,應(yīng)用v=rh去計算。
三、鞏固練習(xí)(填表)
hvs=20平方分米
4分米
r=5厘米
10厘米
d=8分米
6分米
c=12、56米
2米
四、課堂小結(jié)
同學(xué)們,通過這堂課的學(xué)習(xí)你知道了些什么?誰來說一下。
回答得非常好,下去以后可以應(yīng)用所學(xué)知識去解答一些實際問題。
板書設(shè)計:
圓柱的體積
圓柱的體積===底面積*高
↓↓↓
長方體的體積===底面積*高v==sh
作業(yè)設(shè)計:完成習(xí)題
圓柱體積教學(xué)設(shè)計10
教學(xué)內(nèi)容:
青教版九年義務(wù)教育六年制小學(xué)數(shù)學(xué)六年級下冊第23—28頁。
教材簡析:
該信息窗呈現(xiàn)的是圓柱和圓錐形狀的冰淇淋盒,并分別標(biāo)出了它們的底面直徑和高。引導(dǎo)學(xué)生提出問題,引入對圓柱、圓錐體積計算的探索和學(xué)習(xí)!昂献魈剿鳌敝械谝粋紅點部分是學(xué)習(xí)圓柱的體積。
教學(xué)目標(biāo):
1、結(jié)合具體情境,通過探索與發(fā)現(xiàn),理解并掌握圓柱并能解決簡單的實際問題。
2、經(jīng)歷探索圓柱計算公式的過程,進(jìn)一步發(fā)展空間觀念。
3、在觀察與實驗、猜測與驗證、交流與反思等活動中,初步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,初步了解并掌握一些數(shù)學(xué)思想方法。
教學(xué)重點和難點:
圓柱、圓錐體積的計算方法,以及體積公式的探索推導(dǎo)過程。
教具準(zhǔn)備:
多媒體課件、圓柱體積學(xué)具、沙子等。
第一課時
教學(xué)過程:
一、創(chuàng)設(shè)情境,激趣引入。
談話:同學(xué)們,天氣漸漸熱了,在夏季同學(xué)們最喜歡的冷飲是什么?(生回答)
課件出示:兩個圓柱體冰淇淋。
談話:看,小明買了兩個冰淇淋,你能猜猜哪種包裝盒體積大嗎?
(生猜測)這節(jié)課我們就來研究圓柱的體積。(板書課題——圓柱體的體積。)
設(shè)計意圖:
從生活中常見的例子導(dǎo)入新課,從中培養(yǎng)學(xué)生在生活中發(fā)現(xiàn)數(shù)學(xué)問題、提出問題的意識。學(xué)生的猜測為后面的實驗驗證做好了鋪墊,激發(fā)學(xué)生探究新知的欲望。
二、回憶舊知,實現(xiàn)遷移。
談話:怎樣求圓柱的體積呢?我們也許能從以前研究問題的方法里得到啟示,找到解決問題的辦法。請大家想一想,在學(xué)習(xí)圓的面積時,我們是怎樣推導(dǎo)出圓的面積計算公式的?
(學(xué)生回答后,教師利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關(guān)系,進(jìn)而推導(dǎo)出圓面積計算公式的過程。)
設(shè)計意圖:
通過回顧圓的面積的推導(dǎo)方法,巧妙地運用舊知識進(jìn)行遷移。
三、利用素材,探索新知。
、褰涣鞑聹y
談話:通過剛才的回顧,你們能想辦法將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的立體圖形來求體積嗎?
生:我們學(xué)過長方體的體積,可不可以將圓柱轉(zhuǎn)化成長方體呢?
師談話:你的想法很好,怎樣轉(zhuǎn)化呢?
生討論,交流。
生匯報,可能會有以下幾種想法:
1、先在圓柱的底面上畫一個最大的正方形,再豎著切掉四周,得到一個長方體,然后把切下的四塊拼在一起。
2、可以把圓柱的底面分成許多相同的扇形,然后豎著切開,重新拼一拼。
3、如果是橡皮泥那樣的,可以把它重新捏成一個長方體,就能計算出它的體積了。
談話:請同學(xué)討論和評價一下,哪一種方法更合理呢?引導(dǎo)學(xué)生按照第二種方法進(jìn)行驗證。
、鎸嶒烌炞C
學(xué)生動手進(jìn)行實驗。
談話:請每個小組拿出學(xué)具,按照剛才第3小組的方法把它轉(zhuǎn)化為近似的長方體,并研究轉(zhuǎn)化后的長方體和原來圓柱體積、底面積、高之間的關(guān)系。
學(xué)生合作操作,集體研究、討論、記錄。
設(shè)計意圖本環(huán)節(jié)讓學(xué)生親自動手 操作,再次感受“化圓為方”的思想。動手操作,是學(xué)生發(fā)現(xiàn)規(guī)律和獲取數(shù)學(xué)思想的重要途徑。
四、分析關(guān)系,總結(jié)公式
1、全班交流
談話:哪個小組愿意展示一下你們小組的研究結(jié)果?
引導(dǎo)學(xué)生發(fā)現(xiàn):
轉(zhuǎn)化后的形狀變了,但是體積沒有變,底面的面積沒有變,高也沒有變。
2、分析關(guān)系
引導(dǎo)說出:圓柱體轉(zhuǎn)化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。
3、總結(jié)公式。
談話:同學(xué)們真了不起!你們的發(fā)現(xiàn)非常正確。我們來看一看課件演示。
。ㄕn件分別演示將圓柱等分成16份、32份、64份的割拼過程,學(xué)生觀察、思考。)
談話:你發(fā)現(xiàn)了什么?
引導(dǎo)觀察:分的份數(shù)越多,拼成的圖形就越接近長方體。
。ㄕn件動態(tài)演示:圓柱的高——長方體的高,圓柱的底面積——長方體的底面積。)
談話:其實大家剛才又采用了“化圓為方”的方法將圓柱轉(zhuǎn)化成了長方體。你現(xiàn)在能總結(jié)出圓柱體積的計算公式嗎?說一說你是怎樣想的。
根據(jù)學(xué)生的回答教師板書:
長方體的體積 = 底面積 × 高
圓柱的體積 = 底面積 × 高
談話:你能用字母表示圓柱的體積計算公式嗎?V=Sh
設(shè)計意圖教師給予適當(dāng)?shù)难菔,溝通圓面積計算公式的推導(dǎo)方法與圓柱體積計算公式推導(dǎo)方法的共同點——轉(zhuǎn)化法,便于學(xué)生順利推導(dǎo)出圓柱體積的計算公式。
五、利用公式,解決問題。
自主練習(xí)第1題、第2題、第3題
設(shè)計意圖鞏固練習(xí)及時讓學(xué)生利用結(jié)論解決問題,感受自己研究的重要價值,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
六、課堂總結(jié)
圓柱體積教學(xué)設(shè)計11
教學(xué)目標(biāo)
1、理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式。
2、會運用公式計算圓柱的體積。
教學(xué)重點
圓柱體體積的計算。
教學(xué)難點
理解圓柱體體積公式的推導(dǎo)過程。
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備
。ㄒ唬┙處熖釂
1、什么叫體積?怎樣求長方體的體積?
2、圓的面積公式是什么?
3、圓的面積公式是怎樣推導(dǎo)的?
。ǘ┱勗拰(dǎo)入
同學(xué)們,我們在研究圓面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形知識的來解決的。那圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題。(板書:圓柱的體積)
二、新授教學(xué)
(一)教學(xué)圓柱體的體積公式。(演示動畫“圓柱體的體積1”)
1、教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體。
2、學(xué)生利用學(xué)具操作。
3、啟發(fā)學(xué)生思考、討論:
。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
。2)通過剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了。
、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化。
、劢崎L方體的高就是圓柱的高,沒有變化。
4、學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進(jìn)行猜想。
(1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
(3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5、啟發(fā)學(xué)生說出通過以上的觀察,發(fā)現(xiàn)了什么?
(1)平均分的份數(shù)越多,拼起來的形體越近似于長方體。
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
6、推導(dǎo)圓柱的體積公式
(1)學(xué)生分組討論:圓柱體的體積怎樣計算?
。2)學(xué)生匯報討論結(jié)果,并說明理由。
因為長方體的體積等于底面積乘高。(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)
。3)用字母表示圓柱的體積公式。(板書:V=Sh)
。ǘ┙虒W(xué)例4。
1。出示例4
例4。一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
2。反饋練習(xí)
。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
。2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
(三)教學(xué)例5。
1、出示例5
例5、一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
=3.14×
。3.14×100
=314(平方厘米)
水桶的容積:
314×25
。7850(立方厘米)
。7.8(立方分米)
答:這個水桶的容積大約是7.8立方分米。
三、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
1、圓柱體體積公式的推導(dǎo)方法。
2、公式的應(yīng)用。
四、課堂練習(xí)
。ㄒ唬┨畋
底面積S(平方米)
高h(yuǎn)(米)
圓柱的體積V(立方米)
15
3
6.4
4
圓柱體積教學(xué)設(shè)計12
教學(xué)目標(biāo):
1.結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2.讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
3.通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點:讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
教學(xué)難點:讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程掌握圓柱體積的計算方法。
教學(xué)方法:操作法、推理法、講授法
教學(xué)過程:
一、復(fù)習(xí)引新。
我們以前學(xué)過哪些立體圖形?
生答:長方體和正方體。
它們的體積是怎么求的?
長方體:長×寬×高,正方體:棱長×棱長×棱長。
二、教學(xué)例4。
1、出示長方體和正方體。
它們的底面積相等,高也相等。長方體和正方體的體積相等嗎?為什么?
生答:體積=底面積×高,所以長方體和正方體的體積相等。
2、出示圓柱。
猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?
生猜測:相等。
究竟如何,今天我們就一起來研究圓柱的體積。
板書課題:圓柱的體積。
問:剛才只是你們的猜測,你準(zhǔn)備怎么驗證?依據(jù)是什么?(4人小組討論)
生:準(zhǔn)備把圓柱轉(zhuǎn)化成我們以前學(xué)過的立體圖形,來求它的體積。
依據(jù)是圓可以轉(zhuǎn)化成長方形計算面積。
3、出示課件。
回顧圓的面積計算公式是怎樣推導(dǎo)的。
4、回顧了圓的面積公式推導(dǎo),你有什么啟發(fā)?
生答:把圓柱轉(zhuǎn)化成長方體計算體積。
5、動手操作。
請2位同學(xué)上臺用教具來演示,邊演示邊講解。
把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。
多請幾組同學(xué)上臺講解,完善語言。
提問:為什么用“近似”這個詞?
6、教師演示課件。
把圓柱拼成了一個近似的長方體。
7、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?
生答:拼成的`物體越來越接近長方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
8、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。
師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學(xué)們進(jìn)行交流?
出示討論題。
1、拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?
2、拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?
3、拼成的長方體的體積與原來圓柱的體積有什么關(guān)系?為什么?
板書:
長方體體積=底面積×高
圓柱體積=底面積×高
9、根據(jù)上面的實驗和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。
10、用字母如何表示。
11、出示例4。
現(xiàn)在你知道圓柱的體積與長方體、正方體的體積相等了嗎?
為什么?
生答:體積相等,都是用底面積×高。
V=sh
三、鞏固練習(xí)。
1、出示練習(xí)七第一題。
學(xué)生直接把答案填寫在表中。
提問:你是根據(jù)什么填寫的?
2、練一練。
這兩題,你打算怎么計算?
生答:不知道底面積,要先算出底面積,再乘高。
3.14×2×5 = 62.8(平方厘米)
3.14×(6÷2)×8 = 226.08(平方厘米)
3、一個圓柱形狀的糧囤,從里面量得底面周長是12.56米,高是2米。它的容積是多少立方米?
問:這道題和前面做的有什么不同?怎么計算?
生答:這是求容積的。所以數(shù)據(jù)是從里面量的。
4、練習(xí)七第2題。
觀察下面的3個杯子,你能看出哪個杯子的飲料多?
請學(xué)生猜一猜。
請學(xué)生列出三道算式。
。1)3.14×(8÷2)×4
。2)3.14×(6÷2)×7
。3)3.14×(5÷2)×10
問:你能不求出結(jié)果直接比較出大小嗎?
生答:第一個杯子的飲料多。
5、練習(xí)七第三題。
學(xué)生獨立解答。
指名說說是怎樣算的?
3.14×3×5×1= 141.3(千克)
141.3千克<150千克
答:這個保溫茶桶不能盛150千克水。
四、總結(jié)。
今天這節(jié)課你學(xué)到了什么?
圓柱體積教學(xué)設(shè)計13
教學(xué)目標(biāo):
1、通過教學(xué),使學(xué)生經(jīng)歷觀察、猜想、操作、驗證、交流和歸納等數(shù)學(xué)活動過程,探索并掌握圓柱的體積公式,初步學(xué)會應(yīng)用公式計算圓柱的體積,并解決相關(guān)的簡單實際問題;
2、使學(xué)生在活動中進(jìn)一步體會“轉(zhuǎn)化”方法的價值,培養(yǎng)應(yīng)用已有知識解決新問題的能力。
3、培養(yǎng)學(xué)生初步的空間概念、動手能力、操作能力和邏輯思維推理能力。
教學(xué)重點:
掌握和運用圓柱體積計算公式進(jìn)行正確計算。
教學(xué)難點:
理解圓柱體積計算公式的推導(dǎo)過程,體會“轉(zhuǎn)化”方法的價值。
教學(xué)準(zhǔn)備:
1、用于演示把圓柱體積轉(zhuǎn)化成長方體體積的教具。
2、多媒體課件。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入、揭示課題
談話:前幾節(jié)課我們已經(jīng)認(rèn)識了圓柱體,學(xué)會了計算圓柱的側(cè)面積、底面積和表面積,今天這節(jié)課我們繼續(xù)來研究圓柱的體積。同學(xué)們回憶一下,什么叫體積?(指名回答,生:物體所占空間的大小叫做體積。)我們學(xué)會計算哪些立體圖形的體積呢?(指名學(xué)生回答,教師演示課件。根據(jù)學(xué)生的回答,板書:長方體的體積=底面積×高)
1、呈現(xiàn)長方體、正方體和圓柱的直觀圖。
2、揭題:老師為大家準(zhǔn)備了長方體、正方體、圓柱。其中我們學(xué)過了長方體和正方體的體積計算方法。大家想不想知道圓柱體的體積計算方法?今天我們一起來探索圓柱體積的計算方法。(板書課題:圓柱的體積)
3、教師:在研究這個問題之前,我們先來復(fù)習(xí)一下,圓的面積是怎樣計算的呢?圓的面積計算公式是怎樣推導(dǎo)出來的?(學(xué)生:把一個圓,平均分成若干個扇形,拼成一個近似長方形,長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑。)根據(jù)學(xué)生的敘述,教師課件演示。
二、自主探究,精講點撥
1、教師:那么今天我們要研究的圓柱的體積,能不能也像剛才圓的面積公式推導(dǎo)過程一樣,轉(zhuǎn)化成我們學(xué)過的立體圖形,推導(dǎo)出計算圓柱體積的公式呢?
2、學(xué)生小組討論、交流。
教師:同學(xué)們自己先在小組里討論一下
。1)你準(zhǔn)備把圓柱體轉(zhuǎn)化成什么立體圖形?
(2)你是怎樣轉(zhuǎn)化成這個立體圖形的?
。3)轉(zhuǎn)化以后的立體圖形和圓柱體之間有什么關(guān)系?
3、推導(dǎo)圓柱體積公式。
學(xué)生交流,教師動畫演示。
。1)把圓柱體轉(zhuǎn)化成長方體。
。2)怎樣轉(zhuǎn)化成長方體呢?(指名敘述:把圓柱體底面分成平均分成若干個扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。)你會操作嗎?(學(xué)生演示教具)
(3)教師說明:底面扇形平均分的份數(shù)越多,拼成的立體圖形就越接近長方體。
。4)教師:這個長方體與圓柱體比較一下,什么變了?什么沒變?(生:形狀變了,體積大小沒變。)
(5)推導(dǎo)圓柱體積公式。
討論:切拼成的長方體與圓柱體有什么關(guān)系?(學(xué)生回答:切拼成的長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱體的底面積,長方體的高相當(dāng)于圓柱體的高。教師根據(jù)學(xué)生回答演示課件。)
教師:圓柱的體積怎樣計算?用字母公式,怎樣表示?板書:
圓柱的體積 = 底面積×高
V = S h
三、運用公示,解決問題
教師:根據(jù)圓柱體積的計算公式,如果要求圓柱的體積,你必須知道哪些條件就可以求?
①知道圓柱的底面積和高,可以求圓柱的體積。
練習(xí)七的第1題:填表。
、谥缊A柱的底面半徑和高,可以求圓柱的體積。
試一試。
③知道圓柱的底面積直徑和高,可以求圓柱的體積。
練一練的第1題:計算下面各圓柱的體積。
④知道圓柱的底面周長和高,可以求圓柱的體積。
一根圓柱形零件,底面周長是12.56厘米,長是10厘米,它的體積是多少?
四、遷移應(yīng)用,質(zhì)疑反饋。
1、判斷正誤,對的畫“√”,錯誤的畫“×”。
2、計算下面各圓柱的體積。
3、智慧屋:已知一個圓柱的側(cè)面積為37.68平方厘米,底面半徑為3厘米,求這個圓柱的體積。
五、全課小結(jié)。
這節(jié)課我們一起學(xué)習(xí)了運用轉(zhuǎn)化的方法推導(dǎo)出圓柱體積的計算公式,并且能夠運用圓柱體積的計算公式解決一些實際問題。在今后的學(xué)習(xí)中,特別提醒大家一定正確計算出圓柱的體積,并且能靈活運用圓柱的體積計算公式。
六、作業(yè)布置:
完成作業(yè)紙上的習(xí)題
教學(xué)反思
本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育蘇教版六年級下冊的《圓柱的體積》,以前教學(xué)此內(nèi)容時,直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=Sh,讓學(xué)生套公式練習(xí);我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學(xué)生學(xué)到了有價值的知識。
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實踐增強(qiáng)探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。
而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。
不足之處是:
1、
2、 留給學(xué)生自由討論、實踐和思考的時間較少。 教學(xué)時教師語言過于平緩,沒有調(diào)動起學(xué)生的積極性。
圓柱體積教學(xué)設(shè)計14
【教學(xué)過程】
一、揭示課題,確定目標(biāo)
談話:前面我們認(rèn)識了圓柱,學(xué)習(xí)了圓柱的底面積、側(cè)面積和表面積,今天學(xué)習(xí)“圓柱的體積”。(教師板書,學(xué)生齊讀)
啟發(fā):看到這個課題,你們會想到什么?這堂課要解決什么問題呀?(可能學(xué)生會提出以下幾個問題)
引導(dǎo):
。1)什么是圓柱的體積?
(2)圓柱的體積和什么有關(guān)?
。3)圓柱的體積公式是怎樣推導(dǎo)出來的?
。4)圓柱的體積是怎樣求出來的?
。5)學(xué)習(xí)圓柱的體積公式有什么用?
談話:對!剛才這幾位同學(xué)跟老師想的一樣。
啟發(fā):圓柱的體積就是圓柱所占空間的大小
談話:這堂課我們主要解決三個問題:(出示探究問題)
1、圓柱的體積和什么有關(guān)?
2、這個公式是怎樣推導(dǎo)出來的?
3、學(xué)習(xí)了圓柱的體積能解決什么實際問題?
【設(shè)計意圖】直接揭示課題,啟發(fā)學(xué)生自己提出教學(xué)的要求,這樣既創(chuàng)設(shè)了問題情境,激發(fā)學(xué)生學(xué)習(xí)的興趣,又使學(xué)生明確這堂課的教學(xué)目標(biāo)。
二、溫故知新,自學(xué)課本
1、提出問題
談話:現(xiàn)在請大家回憶一下,我們以前學(xué)過哪些立體圖形的體積計算。是怎樣計 算的?
引導(dǎo):我們已經(jīng)學(xué)過長方體、正方體的體積計算。(教師隨著學(xué)生的回答,逐一出示出上述圖形)。
談話:長方體的體積=長×寬×高
正方體的體積=棱長×棱長×棱長
統(tǒng)一為:長方體或正方體的體積=底面積×高
談話:長方體和正方體和今天學(xué)習(xí)的圓柱有什么顯著的區(qū)別?
引導(dǎo):長方體的面都是平面圖形,圓柱的側(cè)面是一個曲面。
談話:因為圓柱的側(cè)面是一個曲面,計算圓柱的體積就比較困難了。能不能直接 用體積單位去量呢?
引導(dǎo):它的側(cè)面是一個曲面,用體積單位直接量是有困難的。
2、引發(fā)猜想
談話:圓柱的體積和什么有關(guān)系呢?(準(zhǔn)備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)
引導(dǎo):圓柱體的體積既和底面積有關(guān),又和高有關(guān)。
3、自學(xué)課本
談話:圓柱體的體積和底面積、高到底有什么關(guān)系呢?如何求圓柱體的體積?
啟發(fā):請大家閱讀課本,在課本中尋找答案。(教師要求學(xué)生利用預(yù)先準(zhǔn)備好的平均分成16份圓柱學(xué)具拼一拼,學(xué)生一邊看書,一邊操作。學(xué)生閱讀課本后,全班交流。)
引導(dǎo):我們用圖形轉(zhuǎn)化的方法,求圓柱的體積。
談話:這個辦法很好。那么把圓柱轉(zhuǎn)化成什么圖形呢?
引導(dǎo):長方體。
談話:以前我們學(xué)習(xí)圓的面積時也是運用轉(zhuǎn)化的策略,把圓轉(zhuǎn)化成近似的長方形,“化曲為直”、“化圓為方”推導(dǎo)出圓的面積計算公式。
。ㄓ枚嗝襟w演示圓形的轉(zhuǎn)化過程,邊出示、邊交流)
【設(shè)計意圖】在不能用體積單位直接量的情況下,啟發(fā)學(xué)生運用轉(zhuǎn)化的數(shù)學(xué)思想解決問題。通過復(fù)習(xí)了舊知識,又為學(xué)習(xí)新知識作好鋪墊,能夠促進(jìn)學(xué)生充分運用遷移規(guī)律把新舊知識聯(lián)系起來組成一個新的知識結(jié)構(gòu)。
三、合作交流 發(fā)展能力
談話:同學(xué)們觀察一下,拼成的是什么圖形?
引導(dǎo):近似的長方體。
啟發(fā):說得很好,為什么說是近似的長方體,哪里不太像?
引導(dǎo):長都是許多弧線組成,不是直的。
談話:這里我們把圓柱分成16等分,還能分嗎?
談話:究竟能分多少份呢?
引導(dǎo):無數(shù)份,可以永遠(yuǎn)分下去。
談話:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長就越接近于直線段,這個圖形就越接近于長方體。
四、師生合作 歸納結(jié)論
談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發(fā)現(xiàn)了什么?
匯報:把圓柱體轉(zhuǎn)化為近似的長方體,形狀變了,體積沒有變。
談話:要求圓柱的體積,我們只要求轉(zhuǎn)化后的長方體的體積就可以了。
匯報:
。1)轉(zhuǎn)化后的近似長方體的底面積與原來的圓柱體的底面積相等。
。2)轉(zhuǎn)化后的近似長方體的高與原來的圓柱體的高相等。
因為:長方體的體積=底面積×高
所以:圓柱的體積 =底面積×高
。ń處熞髮W(xué)生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導(dǎo)的過程。)
長方體的體積=底面積×高
圓柱的體積 =底面積×高
交流:我們也可以用字母表示圓柱的體積計算公式:v = s h (板書)
引導(dǎo):剛才我們的猜想是正確的,圓柱的體積既和底面積有關(guān),又和高有關(guān)。
現(xiàn)在請同學(xué)們把圓柱體積公式的推導(dǎo)過程再完整地說一遍。
談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關(guān)。
通過分一分、拼一拼我們把圓柱轉(zhuǎn)化成了近似的長方體。
通過比一比、算一算成功地推導(dǎo)出圓柱的體積計算公式,解決了我們前兩個要探究的問題。
【設(shè)計意圖】要求每個學(xué)生動手操作,打破了過去教師演示教具學(xué)生看的框框,并滲透轉(zhuǎn)化、無限等數(shù)學(xué)思想,讓學(xué)生自己從嘗試中推導(dǎo)圓柱體積的公式。
圓柱體積教學(xué)設(shè)計15
一、教學(xué)對象及學(xué)習(xí)內(nèi)容特點分析:
圓柱的體積是小學(xué)立體幾何圖形中的重要內(nèi)容之一,是已學(xué)的長方體知識和將學(xué)的圓椎體知識的橋梁,其公式是長方體、正方體體積公式V=Sh的延續(xù)。
二、教學(xué)目的:
學(xué)生能借助媒體提供的資源理解和掌握圓柱體積的計算公式。
學(xué)生能應(yīng)用圓柱體積公式進(jìn)行圓柱體積的計算。
學(xué)生能利用知識之間相互"轉(zhuǎn)化"的思想探索解決新的問題。
三、教學(xué)基本指導(dǎo)思想、教學(xué)策略和方法:整個過程,充分利用計算機(jī)的優(yōu)點,以小組學(xué)習(xí)的形式,發(fā)揮學(xué)生的主體作用,教師是學(xué)生學(xué)習(xí)過程的組織者和輔導(dǎo)者。長方體的體積公式和平面圖形的面積公式已學(xué)過,因此引導(dǎo)學(xué)生用轉(zhuǎn)化的思想去學(xué)習(xí),并創(chuàng)設(shè)情景,讓學(xué)生自己發(fā)現(xiàn)問題,利用電腦、課本、實物提供的資源協(xié)商解決問題,使全體學(xué)生都成為學(xué)習(xí)的主人。
四、教學(xué)運用的主要手段、技術(shù)、材料:電腦網(wǎng)絡(luò)、實物投影、圓柱體。
五、教學(xué)過程的設(shè)想和點評
教師的教學(xué)行為學(xué)生的學(xué)習(xí)行為點評
第一階段:創(chuàng)設(shè)情景,設(shè)疑引趣。
教師故事引入:圓柱形狀的"轉(zhuǎn)筆刀"和"漿糊筆"迎著朝陽高高興興上學(xué)了,走著走著,它們就為哪個體積大而爭論起來,"轉(zhuǎn)筆刀"很自信地說:"看我這么胖,肯定是我的體積大!""漿糊筆"很不服氣地說:"我比你高多了,一定是我的體積大!"就這樣你一言我一語,爭論了很久還沒個結(jié)果。
提問:小組討論尋找解決這兩個圓柱體積大小的方法。
1、學(xué)生小組討論解決的方法。
2、小結(jié)歸納:解決圓柱的體積的方法:尋找一種方法,導(dǎo)出圓柱的體積公式,然后應(yīng)用公式求圓柱的體積。
通過情景的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)熱情,讓他們發(fā)現(xiàn)問題,并通過討論找出解決的方法,使學(xué)生從被動學(xué)習(xí)變?yōu)橹鲃訉W(xué)習(xí),學(xué)生對這節(jié)課的學(xué)習(xí)也從宏觀上得到了解。學(xué)生解決問題的方法有出人意料的回答,老師根據(jù)情況,給予恰當(dāng)?shù)墓膭钚缘脑u價,以激發(fā)學(xué)生的思維。
第二階段: 自主探究。概括規(guī)律
1、電腦提供學(xué)生探索資源:
。1)平面圖形(長方形、正方形、平行四邊形、三角形、梯形、圓形)面積公式和立體圖形(長方體、正方體)體積公式的導(dǎo)出過程。
(2)把圓柱的底面分成許多相等的扇形,然后把圓柱切開,拼成一個近似的長方體。
2、學(xué)生反饋自學(xué)內(nèi)容,師生共同導(dǎo)出圓柱的體積公式V=Sh1、學(xué)生打開電腦"自能學(xué)習(xí)"中的"尋方法",有選擇地看學(xué)過的平面圖形的面積公式和立體圖形體積公式的導(dǎo)出過程,從中找到推導(dǎo)圓柱體積公式的方法
2、學(xué)生通過觀察圓柱公式的推導(dǎo)過程。
3、小組討論填寫實驗報告。
4、師生導(dǎo)出圓柱的體積公式后,學(xué)生自學(xué)課本例題,并完成例4內(nèi)容。通過利用資源、自能學(xué)習(xí),讓全體學(xué)生都能動腦、動口、動手參與到學(xué)習(xí)中去,使學(xué)生學(xué)會學(xué)習(xí)、學(xué)會協(xié)作,所學(xué)知識的理解更為深刻、透徹。在自學(xué)的過程中教師通過監(jiān)控密切觀察著學(xué)生的學(xué)習(xí)情況,發(fā)現(xiàn)問題及時解決。
圓柱體積公式的推導(dǎo)過程,學(xué)生會有不同的方法,如用課本的方法或用類比的方法,教師應(yīng)給予恰當(dāng)?shù)脑u價。
第三階段:拓展公式,自能訓(xùn)練。
1、公式拓展。
在日常生活中,圓柱的底面積通常沒有直接給出,那么我們通過什么條件也能求出圓柱的底面積呢?
2、教師小結(jié):無論已知圓柱的底面半徑、直徑還是底面周長,我們都必須根據(jù)V=Sh,先求出圓柱的底面積,然后乘以高才能求出圓柱的體積。
3、質(zhì)疑
1、學(xué)生可根據(jù)已學(xué)的"圓的面積"公式導(dǎo)出。
。ó(dāng)已知圓柱底面的半徑時V=∏r2h、當(dāng)已知直徑時V=∏(d÷2)2h、當(dāng)已知周長時,先求半徑,再求底面積,然后求圓柱體積。
2、判斷。并說明原因
。1) 一個圓柱體的底面積是8平方厘米,高是6厘米,這個圓柱體的體積是48立方厘米。
(2) 一個圓柱的底面積是10平方米,高是10米,它的體積是100平方米。
。3) 一個圓柱體鐵罐,底面直徑是2米,高是3米,求它的體積。 列式是:3.14×22×3
1、根據(jù)生活實際,當(dāng)知道圓柱底面半徑、直徑或周長時,怎樣求圓柱的體積這個問題,可以讓學(xué)生充分拓展思維,不要停留在只會死記公式、生搬硬套的低層次上。并大力鼓勵、表揚(yáng)愛動腦筋的同學(xué)
2、通過練習(xí),學(xué)生對基本知識有一定的理解,教師也了解了學(xué)生對知識的掌握情況。
第四階段:反饋學(xué)習(xí)、應(yīng)用提高。
1、提出練習(xí)要求:先做"鞏固"練習(xí),有余力的再做"提高"練習(xí)。
2、小結(jié)練習(xí)情況,及時表揚(yáng)對而快的同學(xué)及小組
3、回應(yīng)開頭,解決"漿糊筆"和"轉(zhuǎn)筆刀"爭論的問題。學(xué)生在電腦上完成。
1、賽車游戲:看誰跑得快。
(1)圓柱的底面積是15平方米,高是3米,體積是( )立方米。
。2)已知圓柱的高是20厘米,底面積100平方厘米,圓柱的體積是( )平方厘米。
。3)一個圓柱形的糧囤,從里面量底面半徑是2米,高是2.5米。這個糧囤能裝稻谷( )立方米。
。4)一個圓柱的體積是80立方分米,底面積是16平方分米,它的高是( )分米。
2、提高練習(xí)?寄阒腔郏嚎凑l攀得高。
。1)一個圓柱,它的底面直徑4厘米,高是3米,體積是( )立方厘米。
。2)一個圓柱體鐵架,它的底面周長是62.8分米,高是6分米,它的體積是( )立方分米。
在計算過程中,學(xué)生會遇到不少問題,可通過師生交流或小組互相幫助解決,從而實現(xiàn)互幫、互學(xué)共同提高。
六、歸納總結(jié)、自我評價。
1、提出要求,學(xué)生談收獲。
2、總結(jié)本節(jié)情況。 談收獲,并作出自我評價。通過談收獲,體現(xiàn)學(xué)習(xí)的自主性,體驗獲得成功的樂趣。
七、對教學(xué)過程的設(shè)想和點評:
新課程標(biāo)準(zhǔn)注重小學(xué)生對周圍世界與生俱來的探究興趣和需要,在小學(xué)階段,學(xué)生的知識積累與思維能力較為有限,強(qiáng)調(diào)用符合小學(xué)生年齡特點的方式學(xué)習(xí),提倡課程貼近小學(xué)生的生活,這節(jié)課從學(xué)生身邊學(xué)習(xí)用品"卷筆刀"和"漿糊筆"的入手,通過擬人的方式,由它們上學(xué)過程中引起的爭論導(dǎo)出學(xué)習(xí)的內(nèi)容,激發(fā)學(xué)生學(xué)習(xí)的積極性。這樣在教學(xué)進(jìn)程中安排好相關(guān)的情景組織學(xué)生參與其中,親歷過程,自主地開展活動,通過看、做、玩、想等方式,讓學(xué)生既學(xué)會知識與技能,又培養(yǎng)智能、情感態(tài)度與價值觀,促進(jìn)學(xué)生科學(xué)素養(yǎng)的形成。
新課標(biāo)還積極倡導(dǎo)讓學(xué)生親身經(jīng)歷以探究為主的學(xué)習(xí)活動,培養(yǎng)他們的好奇心和探究欲,使他們學(xué)會探究解決問題的策略,為他們終身的學(xué)習(xí)和生活打好基礎(chǔ)。這是一節(jié)在網(wǎng)絡(luò)環(huán)境下開展的探究型數(shù)學(xué)課,引入后,教師則大膽放手,營造了一個開放的探究空間,通過學(xué)生小組討論尋找比較圓柱大小的方法,引導(dǎo)學(xué)生通過自主、合作探究這種學(xué)習(xí)方式進(jìn)行實踐活動,觀察由圓柱轉(zhuǎn)變成已學(xué)過長方體的過程,在觀察中相互啟發(fā),共同提高,形成共識后并加以記錄。再將大家的記錄結(jié)果對比、討論、從而得出結(jié)論:圓柱的體積=轉(zhuǎn)變成的長方體的體積,從而導(dǎo)出圓柱的體積公式V=SH。在這一過程中,教師以學(xué)生的發(fā)展為本,關(guān)注每一位的發(fā)展,珍視每位學(xué)生的探究體驗及獨特見解,在學(xué)生探究結(jié)果的表述過程中,對同一個問題,不同的人可以得出不同的結(jié)論,他們通過互相交流互相討論,思維更是得到發(fā)展與創(chuàng)新。不僅激發(fā)了每一位學(xué)生主動參與探究實踐活動,更讓學(xué)生在探究中學(xué)會合作、懂得思考、大膽發(fā)表自己的獨特見解,更學(xué)會傾聽、尊重他人的意見,從而實現(xiàn)互幫、互學(xué)共同提高,并在探究中發(fā)現(xiàn)、學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)的興趣,培養(yǎng)了實踐的能力。
網(wǎng)絡(luò)環(huán)境下的教學(xué)方式不僅改變了以往教師滿堂灌的現(xiàn)象,在拓寬學(xué)生知識面的同時,更培養(yǎng)了學(xué)生搜集信息、處理信息并進(jìn)行合理解釋的能力,大大地激發(fā)了學(xué)生自主學(xué)習(xí)的積極性,學(xué)生的創(chuàng)新意識日漸增強(qiáng),真正實現(xiàn)了利用信息技術(shù)為教學(xué)內(nèi)容服務(wù)。
【圓柱體積教學(xué)設(shè)計】相關(guān)文章:
圓柱的體積教學(xué)設(shè)計03-01
數(shù)學(xué)《圓柱的體積》教學(xué)設(shè)計05-01
《圓柱的體積》教學(xué)設(shè)計(6篇)02-09