- 相關推薦
鴿巢原理獲獎教學設計
鴿巢原理是組合數學中一個重要的初等原理,在解決一某類存在性問題中具有廣泛應用,為了讓學生更好理解,分享了鴿巢原理的教學設計,希望對大家有幫助!
一、教材分析
《鴿巢原理》是義務教育課程標準實驗教科書數學六年級下冊第五單元數學廣角的教學內容。這部分教材通過幾個直觀例子,借助實際操作,向學生介紹“鴿巢原理”,使學生在理解“鴿巢原理”這一數學方法的基礎上,對一些簡單的實際問題加以“模型化”,會用“鴿巢原理”加以解決。
二、學情分析
“鴿巢原理”在生活中運用廣泛,學生在生活中常常能遇到實例,但并不能有意識地從數學的角度來理解和運用“鴿巢原理”。教學中應有意識地讓學生理解“鴿巢原理”的“一般化模型”。六年級學生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經驗,很容易感受到用“鴿巢原理”解決問題帶來的樂趣。
三、教學理念
激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“魔術游戲”,讓學生置身游戲中開始學習,為理解鴿巢原理埋下伏筆。通過小組合作,動手操作的探究性學習把鴿巢原理較為抽象難懂的內容變?yōu)閷W生感興趣又易于理解的內容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。
四、教學目標
1、知識與技能:經歷“鴿巢原理”的探究過程,初步了解“鴿巢原理”,會用“鴿巢原理”解決簡單的實際問題。
2、過程與方法:通過操作發(fā)展學生的類推能力,形成比較抽象的數學思維。
3、情感與態(tài)度:通過“鴿巢原理”的靈活應用感受數學的魅力。
五、教學重、難點
重點:經歷“鴿巢原理”的探究過程,初步了解“鴿巢原理”。
難點:理解“鴿巢原理”,并對一些簡單實際問題加以“模型化”。
六、教學過程
一、創(chuàng)設情境、引入新課
同學們,你們喜歡魔術嗎?今天,老師也給大家變一個魔術,請5名同學參加這個游戲。
這是一副54張的撲克牌,我取出大小王,還剩52張,你們5人每人隨意抽取一張,我知道至少有2張牌是同一花色的,你信嗎?讓我們帶著疑問見證奇跡!
在這個游戲中蘊含著一個有趣的數學原理叫做鴿巢原理,這節(jié)課我們就一起來研究鴿巢原理。(板書課題)
二、自主學習、探究新知
(一)活動一:
1、研究3枝鉛筆放進2個文具盒。
(1)要把3枝鉛筆放進2個文具盒 ,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內交流。
。2)反饋:兩種放法:(3,0)和(2,1)。
。3)從兩種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)
。4)“總有”什么意思?(一定有)
。5)“至少”有2枝什么意思?(不少于2枝)
小結:在研究3枝鉛筆放進2個文具盒時,同學們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進2枝鉛筆。
(二)活動二:
2、研究4枝鉛筆放進3個文具盒。
(1)要把4枝鉛筆放進3個文具盒里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內交流。
。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
。3)從四種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)
。4)你能用更直接的方法,只擺一種情況,就能得到這個結論呢?(每個文具盒都先放進一枝,還剩一枝不管放進哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)
。5)這位同學運用了假設法來說明問題,你是假設先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)
。7)誰能用算式來表示這位同學的想法?(5÷4=1…1)商1表示什么?余數1表示什么?怎么辦?
。8)在探究4枝鉛筆放進3個文具盒的問題,同學們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設法”來說明理由,你覺得哪種方法更明了更簡單?
三、小組討論、共同研究
3、研究鉛筆比文具盒多1的情況
活動3、
類推:把5枝鉛筆放進4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把6枝鉛筆放進5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把7枝鉛筆放進6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把100枝鉛筆放進99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
總結規(guī)律從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數量多1,總有一個文具盒里至少放進2枝鉛筆。)
深入研究活動4、
如果鉛筆數比文具盒數多2呢?多3呢?是不是也能得到結論:“總有一個筆盒至少有2枝鉛筆!
問題: 把6枝鉛筆放在4個文具盒里,會有什么結果呢?
下面請你猜一猜:
1)、如果把6個蘋果放入4個抽屜中,至少有幾個蘋果被放到同一個抽屜里呢?
2)、如果把8個蘋果放入5個抽屜中,至少有幾個蘋果被放到同一個抽屜里呢?
你發(fā)現(xiàn)了什么規(guī)律?
介紹資料經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,個個都是了不起的數學家。 “ 鴿巢原理”最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。
四、展示評研、歸納提升
小結:從以上的學習中,你有什么發(fā)現(xiàn)?你有哪些收獲呢?(在解決抽屜原理時,我們可以運用假設法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數多1。)
五、拓展延伸,鞏固提升
做一做:
1)、7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一個佶舍里。為什么?
2)、8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?
(先讓學生獨立思考,在小組里討論,再全班反饋)
3)揭穿謎底:
回答開始的問題: 我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?
【鴿巢原理獲獎教學設計】相關文章:
抽屜原理教學設計04-18
《抽屜原理》教學設計02-22
抽屜原理教學設計11-12
《抽屜原理》教學設計優(yōu)秀04-11
《抽屜原理》教學設計通用04-28
《抽屜原理》教學設計14篇03-05
認識負數獲獎教學設計精選08-17